Name: Zilin Zeng Audio and Music Engineering Department

GlassReverb Report

Zilin Zeng
Audio and Music Engineering Department
University of Rochester
Rochester, USA
zzengl2@u.rochester.edu

Tianwei Jiang
Audio and Music Engineering Department
University of Rochester
Rochester, USA
tjiangl4@u.rochester.edu

» Abstract

We designed an audio plug-in called “GlassReverb” that digitally simulated the effect of
playing audio through a liquid-filled wine glass. The mechanical impulse response was measured
using an accelerometer and an inertial exciter attached to the surface of the glass. The measured
impulse response was modified using the previously established model for the harmonics of wine
glasses to allow a user to control the physical properties of the wine glass system in real-time.

* Introduction

Inspired by the glass harmonica, we intended to implement it in the software. Our system
strictly followed a Linear Time-Invariant (LTI) system, so the audio effect was achieved by
convolving the impulse response of a designed wine glass with the user’s audio input. The default
impulse response was measured using the Impulse Response Measurer app from MATLAB, as
shown in Figure 1.

& mpuise Response Measurer € Youaresaeensharing ¢ [ =05 X

MEASURER

= —. = —
Audio Device |ASIO4.. ~|  Player Channel[1 +| |96 e €6 g HEH o B ¢
Le

Duration per Run (s) @ 0.5
Sample Rate (Hz) 44100 |Recorder Channel[1_v| " Favanced

Excitation Level (dBFS)

@0 | setings  Monitor

DEVICE METHOD METHOD SETTINGS APTURE JT EXPOR!

Data Browser

v Captured Data

Title
ir.20210720_112803
i20210720_112822

Col
O I
O  ir20210720_112841 |
i L

ir_20210720_112849

%

v Captured Data Information

_20210720_112845: ) - a Time (s)
Magnitude Response
1
(N
\ N MY
| | Y
I\ N 'NALEL
f\ \ LW YA
AR p "\ I"W r'u Y ! |

{ Wf” 'l

Frequency (Hz)

Figure 1 - Default impulse response for an empty universal-shape wine glass




Name: Zilin Zeng Audio and Music Engineering Department

Figure 2 shows our measurement setup:

Inertial Exciter

Figure 2 — measurement set up for the impulse response of an empty universal-shape wine glass

An inertial exciter was attached to the body of the wine glass. We used the Maximum
Length Sequence (MLS) method that excited the wine glass with white noises played through the
inertial exciter. A piezo pickup was attached to the opposite side of the glass to record the default
impulse response from the wine glass due to noise excitation.

As shown in Figure 3, the user can design his (her) intended wine glass impulse response
by changing the following wine glass parameters: wine glass height, wine glass rim thickness,
wine glass rim radius, liquid height, and liquid density.

Thickness

T e

Height

Liquid Density
(Density)

T

Liquid Height
(LiquidH)

|

_iTE g

Figure 3 — user-controlled plug-in parameters

The default impulse response retrieved was the response for an empty universal-shaped
wine glass. We calculated the fundamental frequency vo’ for its response using this equation [1]:



Name: Zilin Zeng Audio and Music Engineering Department

, 1 (31’)“1 a
11'0 = 3 #
27\50,) R

Y is the Young's Modulus for glass. pg is the density for the wine glass. a is the rim thickness for
the wine glass. R is the rim radius for the wine glass.

Based on the user’s input parameters on the physical properties of a wine glass, we
calculated the fundamental frequency vh for a user-designed wine glass using the following

( ) f ( ) 1

a is a value determined by the shape of the wine glass, which typically equals 1.4. pl is the density
for the liquid. h is the height of the liquid, and H is the height for the body of the wine glass.

We then modified the default impulse response based on the ratio between calculated vh
and vo’. We resampled the default impulse response using that ratio to shift the pitch of the wine
glass response based on the user design. We used MATLAB to design our audio plug-in. Figure 4
shows the Graphical User Interface (GUI) for our “GlassReverb.”

Radius Thickness Height LiquidH Density Freq

Object Under Test

+| glassPlugin ] i

Output

Audio Device Writer v ||@

| Enable

Figure 4 — plug-in GUI configuration

* MATLAB Source Code for Signal Processing:

%Signal Processing Part
function out = process(glassPlugln,in)
if glassPluglin.Enable
%Ioad the recorded impulse response for an empty glass cup
IRSelected = load('measuredIRData.mat’,'IRData’);
IRDataSelected = IRSelected.IRData;
IRInput = zeros(1001,1);
IRInput = transpose(IRDataSelected(1,1800:2800));

Pg = 2.889; % g/cm”3 glass density
Y =7*10"11; %in dyne/cm”3 glass Young's Modulus
alpha=1.4;



Name: Zilin Zeng Audio and Music Engineering Department

%calculating the resonant frequency for a liquid filled glass wine cup
FundFreq = (1/(2*pi))*sqrt((3*Y)/(5*Pg)) * (glassPlugin.Thickness/(glassPlugin.Radius"2)) *
sqrt(1+((4/3)*((glassPlugin.Radius/glassPlugln.Height)"4)));

CalculatedFreq =
FundFreqg/(sqrt(1+(alpha/5)*((glassPlugin.Density*glassPlugin.Radius)/(Pg*glassPluglin.Thickness))*((glassPlugin.WaterH/glassPlugIn.Height)*
)

Sr = zeros(round(round(glassPlugln.Freq)/757)*1001,1);

Sr = resample(IRInput(:,1),757, CalculatedFreq) %shift the resonant frequency of the loaded impulse response based on the calculation
Sr = [Sr ; zeros(size(in,1)-length(Sr),1)];

out = zeros(size(in,1),size(in,2));

%audio signal processing part: convolve the impulse
%response with audio input
fori=1:size(in,1)
ifi==1
glassPlugln.CircularBuffer(1,:) = zeros(1,size(in,2));
glassPlugln.CircularBuffer(1,:) = in(1,:);
end

if i<= (size(in,1)-1)
out(i,1) = sum(glassPlugIn.CircularBuffer(1:size(in,1),1).*Sr(:,1));
out(i,2) = sum(glassPlugIn.CircularBuffer(1:size(in,1),2).*Sr(:,1));
glassPlugln.CircularBuffer(:,1) = circshift(glassPlugin.CircularBuffer(:;,1),1);
glassPlugln.CircularBuffer(:,2) = circshift(glassPlugin.CircularBuffer(;,2),1);
glassPlugln.CircularBuffer(1,:) = in(i+1,:);

end

if i == size(in,1)
out(i,1) = sum(glassPlugIn.CircularBuffer(1:size(in,1),1).*Sr(:,1));
out(i,2) = sum(glassPlugIn.CircularBuffer(1:size(in,1),2).*Sr(:,1));
glassPlugln.CircularBuffer(:,1) = circshift(glassPlugin.CircularBuffer(:,1),1);
glassPlugln.CircularBuffer(:,2) = circshift(glassPlugin.CircularBuffer(:,2),1);
end
end

% mix and volume setup
boostCoeffl = 0.2/max(out(:,1));
boostCoeff2 = 0.2/max(out(:,2));
out(:,1) = out(:,1).*boostCoeffl;
out(:,2) = out(;,2).*boostCoeff2;
out = out.*glassPlugin.Gain;
out = (1-glassPlugIn.Mix/100).*in + (glassPlugIn.Mix/100).*out;

else
out =in;

end

end

 Conclusion:

We have demonstrated the eligibility for designing the “GlassReverb” in MATLAB. We
are currently working on transforming the MATLAB code into the JUCE code to implement a
stand-alone audio plug-in. We are also working on improving the plug-in’s audio quality by
optimizing our codes and seeking better ways to manipulate the input signal.



Name: Zilin Zeng Audio and Music Engineering Department

Reference

[1] French, A. P. “In Vino Veritas: A Study of Wineglass Acoustics.” American Journal of Physics 51, no. 8
(1983): 688—94. https://doi.org/10.1119/1.13147.



