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Abstract
In American English, there are multifarious accents, and one
of the outstanding ones is African American English (AAE).
Within African American English, there exist multiple regional
accents. In this project, we explore the automatic classification
of 5 regional AAE accents. Our goal is to sift out the most repre-
senting features of the utterances and use these features to train
an XGBoost classifier. We investigated several acoustic features
including Mel-frequency Cepstral Coefficients (MFCC), Linear
Prediction Coding (LPC), and Power Normalized Cepstral Co-
efficients (PNCC). These acoustic features are evaluated both
separately and collectively, in order for better classification per-
formance. To ensure robustness, we test the classifier both on
clean audio data and noisy ones. The features we selected show
a strong representation of the regional accents and deliver a ro-
bust outcome.
Index Terms: Regional Accent Identification, Speaker Identifi-
cation, Digital Speech Feature Processing

1. Introduction
As English becomes the lingua franca and social interactions
continue to increase, the acquisition and processing of accented
English language and the ability to understand speech are be-
coming increasingly vital. There are many aspects of speech
that can provide information about a particular speaker’s char-
acteristics [1]. The accent is a linguistic trait that can provide
insights into a speaker’s identity based on the usage of language
and it is a specific pattern of pronunciation of people belonging
to a particular region or geographical location [2]. It also refers
to different ways of pronouncing a language within a particu-
lar community [3]. Using only a brief speech sample, humans
can determine various characteristics about an individual, such
as their gender, age, native language, emotional or attentional
state, and social background. There is widely available research
focusing on the phonetic variation and specific accents of the
English language. State-of-the-art speaker classification based
on the acoustic-phonetic differences employs spectral features
like Mel-Frequency Cepstral Coefficients (MFCC), Linear Pre-
dictive Cepstral Coefficients (LPCC), and Power Normalized
Cepstral Coefficients (PNCC) [4].

In this project, we are tasked to distinguish 5 regional ac-
cents from the Corpus of Regional African American Language
(CORAAL) [5] dataset. Accent recognition is significant in
speech processing tasks because it can alleviate misclassifica-
tion and ensure fair-training of speech-language technologies
[6]. The utterances are extracted from interview interactions
with native English speakers from 5 different regions. As a
relatively new dataset, modest research has been conducted.
Alexander Johnson et al. focus on the dialect density estima-

tion of the CORAAL dataset [6]. They have performed acous-
tic extraction from the data and have successfully estimated the
dialect density. However, such an estimation also relies on the
text transcript of the utterances. Accent classification, on the
other hand, depends purely on acoustic features. As a result, in
the accent classification task, we are expected to neglect gram-
mar and within-language diction. It is also essential to test the
classifier on noisy data in that in realistic implementation, the
noisy background is the norm, and the extracted features should
be robust enough to neglect the noise.

In our implementation, we experiment with the dataset us-
ing different feature sets including MFCC, LPC, and PNCC. In
this work, we first inspect the dataset and analyze its properties
(Sec. 2.1). We then extract features from the dataset and utilize
a combination of the acoustic features to perform accent clas-
sification. The performance is evaluated using both clean test
data and noisy test data to ensure system robustness (Sec. 2.2).
We follow our results with a conclusion (Se. 3) and propose
possible methods to enhance the performance (Sec. 4).

2. Project Description
2.1. Data

This project focuses on the speech samples from the Cor-
pus of Regional African American Language (CORAAL) [5],
which features speech recordings from regional varieties of
African American English (or African American language).
This dataset contains equal male and female identifying partic-
ipants and the participants range from 20 to 80 of age [6]. The
dataset provided is sampled at 44.1kHz in frequency. We are
tasked to perform feature extraction from data in the following
five US cities: speakers from Washington DC (DCB), speak-
ers from Princeville, NC (PRV), speakers from Rochester, NY
(ROC), speakers from Lower East Side Manhattan, NY (LES),
and speakers from Valdosta, GA (VLD). This dataset includes
audio files with clear utterances and low noise backgrounds and
audio files with murmured utterances and noisy backgrounds.
We extract the label from the file name and perform classifica-
tion on both clear test data and noisy test data.

2.2. Feature Extraction

The general methodology of audio classification depends heav-
ily on extracting discriminatory features from the audio wave-
form and feeding these features to a classifier [7]. Audio data
presents both in the time domain and transformation domain
and using different approaches to extract the features provides
varying performances. Several audio characteristics, such as
MFCC, LPC, and PNCC, have been effectively utilized for au-
dio classification. In this project, we are tasked to explore



regional accent classification performance using different fea-
tures. We experiment on the aforementioned feature sets sep-
arately and collectively, and we also sought to find a feature
combination that provides robust classification results.

2.2.1. MFCC

The extraction and selection of the best parametric representa-
tion of acoustic signals are important tasks in the design of any
speech recognition system. This is a critical process that has a
significant impact on the performance of the speech recognition
tasks [8]. A compact representation would be provided by a set
of Mel-frequency Cepstral Coefficients (MFCC), which are the
results of a cosine transform of the real logarithm of the short-
term energy spectrum expressed on a mel-frequency scale [7].
MFCC has 39 parameters and in this project while we select
13 parameters from the coefficients set. The first 12 parame-
ters are related to the amplitude of frequencies which provides
us with enough frequency channel to analyze the audio data.
The thirteenth parameter is the energy in each frame that helps
us to identify phones. The classification-based performance of
MFCC features on clean test audio data and noisy test audio
data is presented in Table 1. We also plot out the importance of
different parameters of MFCC and confusion matrices for both
clean test and noisy test in Fig. 1. It is noticeable in Fig. 1c that
certain features play a more significant role in the classification
task. In the MFCC coefficient set, feature 1, 3, 12, 4, 7 con-
tribute more towards the accent classification. As shown in Fig.
1a and 1b, the DCB accent has higher classification accuracy
as a result of more available training data. The LES accent gets
misclassified severely due to the unsuccessful feature extraction
of this audio dataset.

The result we obtain using MFCC feature library in
tochaudio is different from the one provided by the class,
which utilizes MFCC feature library in librosa even though
both libraries select the first 13 features of MFCC. These fea-
ture differences are likely to happen on the mel-spectrogram
level as the two libraries use different calculation approaches.
We achieve a relatively high noisy test audio classification ac-
curacy but a lousy rate for the clean data. In order to increase the
accuracy rate for the clean test dataset, we need a more robust
and effective feature extraction approach.

Table 1: MFCC Features Classification

Dataset Classification Accuracy

Clean Train 100%
Clean Test 63.98%
Noisy Test 73.20%

(a) Clean Confusion Matrix. (b) Noisy Confusion Matrix.

(c) Most Important MFCC Features.

Figure 1: MFCC Results.

2.2.2. LPC, PNCC, Prosody, and Phonation

Linear Prediction Coding (LPC) models the system output as
a linear combination of past outputs and present input. It is
the process of predicting a signal sample based on the past p
samples [9]. Viewing the LPC analysis as an AR model (All-
pole model) in the frequency domain serves as a powerful tool
for estimating the filter function (i.e.vocal tract envelope spec-
trum, formant frequencies) for a speech signal [10]. The or-
der of LPC (p) is the number of past samples considered for
prediction, which is equivalent to the number of LPC coeffi-
cients (filter poles) returned from the analysis. Each of the p
coefficients would be tantamount to one of the first p formants
(peaks) showing up on the signal’s frequency spectrum. Empir-
ically, the LPC order for a speech signal ranges from 15 to 20.
The classification based on the performance of order-20 LPC
features on clean test audio data and noisy test audio data is
presented in Table 2.

Table 2: order-20 LPC Features Classification

Dataset Classification Accuracy

Clean Train 100%
Clean Test 51.67%
Noisy Test 67.43%

We realize that the LPC feature is low in accuracy for both
clean test audio data and noisy test audio data compared to
MFCC. To improve the overall performance of the LPC feature,
we increase its order from 20 to 48 by referring to the formula
[10]:

p = 2Fmax (in kHz)+[2− 4]

Moreover, instead of doing the LPC analysis on a full-
length audio signal, we calculate the LPC for every 40-second
window frame and average over the LPC coefficient arrays to
retrieve an averaged LPC feature. The aforementioned mod-
ifications boost accuracy for both clean and noisy test sets as
indicated by Table 3.

Making limited progress, the averaged LPC remains an in-
ferior feature set for classifying clean test audio data. Neverthe-



Table 3: order-48 averaged LPC Features Classification

Dataset Classification Accuracy

Clean Train 100%
Clean Test 54.59%
Noisy Test 75.50%

(a) Clean Confusion Matrix. (b) Noisy Confusion Matrix.

(c) Most Important order-48 averaged LPC Features.

Figure 2: LPC Results.

less, just like torchaudio MFCC, the averaged LPC mani-
fests a robust performance for noisy test audio data. Looking
into the shap explainer (Fig. 2a), we also notice that higher-
ordered coefficients have considerable impacts on speaker pre-
dictions, which explains why higher-ordered LPC analysis
gains better accuracy for the noisy test set. By analyzing the
confusion matrices (Fig. 2b and Fig. 2c), we realize accents
from ROC, LES, and VLD can be hard to discern using merely
LPC features. Attempting to get better accuracy for these re-
gions, we choose three additional feature sets: Prosody [11]
[12], Phonation [13], and Power Normalized Cepstral Coeffi-
cients (PNCC) [14]. We used spafe [15] for PNCC feature
extractions, and we installed DisVoice [16] for extracting the
prosody features and the phonation features. PNCC is very sim-
ilar to MFCC except that it uses a power-law nonlinearity rather
than a log nonlinearity and deploys a Gammatone Filter Bank
rather than a Mel Filter bank. The most important difference
comes from that PNCC adopts a noise-suppression algorithm
based on asymmetric filtering that suppresses background ex-

citation. The prosody features represent the pitch contour and
energy contour for voiced speech segments, whereas the phona-
tion features indicate jitters and shimmers over the voiced seg-
ments as well as the derivatives of fundamental frequencies. We
expect to further fortify our feature set’s noise resilience with
PNCC and mitigate the deficiency on the clean test set with fea-
tures pertaining to the fundamental frequencies. The classifica-
tion accuracies for noisy test sets remain steady, yet we achieve
a more reliable classification for the clean test set as Table 4
denotes.

Table 4: MFCC-Prosody-PNCC-LPC-Phonation

Dataset Classification Accuracy

Clean Train 100%
Clean Test 84.12%
Noisy Test 72.33%

(a) Clean Confusion Matrix. (b) Noisy Confusion Matrix.

(c) Most Important features among the MFCC-Prosody-
PNCC-LPC-Phonation Feature Set.

Figure 3: MFCC-Prosody-PNCC-LPC-Phonation Results.

2.2.3. Scale is all you need

Theoretically speaking, more features can represent the data
better, and help increase the approximation capability of a clas-
sifier. To validate whether more features can improve the clas-
sifier performance in African American English Classification
task, inspired by [6], we use the OpenSmile toolkit [17] to



extract CompParE16 features [18] from an audio file. Here
we use the Low-Level Descriptors (LLD) to extract 65 features,
which include several feature groups such as pitch, FFT spec-
trum, signal energy, cepstral, and so on. It is worth mention-
ing that the OpenSmile toolkit can also extract Functionals
level features with a size of 6373. Limited by time and avail-
able memory, we choose the LLD, whose number of features
is still much larger than single features like MFCC. The test
classification accuracies of the xgboost classifier trained based
on OpenSmile LLD features are listed in Table 5. Compared
to the results using MFCC only, the classification accuracy on
the clean test set increases a lot while an accuracy drop appears
on the noisy test set. To shed more light on the contribution
of each feature, We also plot a beeswarm figure to explain the
output of the model in Fig. 4c. It’s obvious that MFCC-SMA
features, which refer to MFCC features of the signal processed
by simple moving average (SMA) low-pass filtering, play a sig-
nificant role in the classifier. Beyond that, the magnitude spec-
trum field (PCM-FFTMag) also matters in the trained classifier,
which may also help increase the classification accuracy on the
clean test set. The improved classification accuracy on the clean
test set demonstrates the benefit of using more features in this
task. Although the classification accuracy is not as good as us-
ing the MFCC feature only reported above, the accuracy is still
higher than the results of using many other single features like
LFCC or LPC.

Table 5: ComParE16 Features Classification Accuracy

Dataset Classification Accuracy

Clean Train 100 %
Clean Test 92.62%
Noisy Test 65.41%

The confusion matrices of the clean test set and the noisy
test set are also plotted in Fig. 4a and 4c. We notice that on the
clean test set, the LES samples are sometimes misclassified to
the ROC or the VLD while all the wrong classification results
of the VLD are the DCB. Therefore, we hypothesize that the
ROC accent is similar to the VLD and the DCB, and the VLD
resembles the DCB. This phenomenon is more obvious in the
classification results of the noisy test set that the LES are mostly
classified as the ROC while all the VLD are regarded as the
DCB. Intuitively, the noise would affect the feature extraction
negatively, making it more difficult to distinguish two similar
accents as the key features may be lost. We conjecture that the
imbalance of the training dataset causes the misclassification of
the VLD to the DCB as the DCB samples dominate the dataset.
To prove this guess, we randomly remove 2300 DCB samples
and keep 157 DCB samples, which are fewer than the VLD
samples with a size of 567. Based on the clipped new dataset,
we retrain the classifier and plot the confusion matrices of the
clean test set and the noisy test set in Fig. 5. We can find that
most clean DCB samples are misclassified to the VLD as the
new dataset has more VLD samples right now. In the noisy test
set, the VLD, the DCB and the VLD are likely to be classified
as the ROC which had the most samples in the new dataset.
These observations further confirm our guess that the imbalance
of the training dataset will cause the classification tendency of
the model.

(a) Clean Confusion Matrix. (b) Noisy Confusion Matrix.

(c) Most Important LLD Features.

Figure 4: ComParE16 LLD Results.

(a) Clean Confusion Matrix. (b) Noisy Confusion Matrix.

Figure 5: Clipped Dataset Results.

2.3. Attempts to increase the accuracy on noisy test data

With 65 CompParE16 features, although the classification ac-
curacy on the clean test set has reached over 90%, the accuracy
on the noisy test set is still not good enough. Aiming to im-
prove the performance of the classifier on the noisy samples,
we look for features that are stable to the noise or the denoise
methods. We notice that our MFCC method reported before
achieves 73.2% accuracy on the noisy test set, so we concate-
nate it with the CompParE16 features. Though CompParE16
features already included the MFCC features, the feature val-
ues may vary due to the different choice of the parameters,
as we see the difference between MFCC value extracted from
torchauio and librosa. However, the combined features
do not help improve the performance but instead smear the per-



formance on both clean and noisy test sets, as shown in Table
6. Aside from selecting the features carefully, we also try the
denoise algorithm using the noisereduce package and cus-
tom Audio-Denoising [19]. However, the accuracy is even
worse.

Table 6: MFCC + ComParE16 Features Classification Accu-
racy

Dataset Classification Accuracy

Clean Train 100 %
Clean Test 82.32%
Noisy Test 64.84%

Data augmentation is commonly used in machine learning
to enrich the amount and diversity of the existing training data
and help improve model accuracy. Therefore, we want to in-
ject the noise into the original audio segments to see whether it
can help improve the performance. Although there are lots of
datasets including all kinds of noise, they overkill the classifi-
cation task here. Without loss of generality, we randomly select
a certain number of noisy test data and added them to the clean
train dataset. And then we test the trained classifier on the clean
train set and the remaining noisy test set. We plot the accu-
racy curves of the test clean set and test noisy set including both
average and standard deviation values based on 30 times repeti-
tions, as shown in Fig 6. We can see the accuracy on the noisy
test set can be improved a lot to 80% even though we solely in-
clude 10 additional noisy samples in the training. As we further
increase the number of noisy samples used for the training, the
classification accuracy on the test noisy set surpasses the one
on the test clean set, not to mention that the number of noisy
samples used for the training is much smaller than the number
of clean training samples. The performance on the clean test
set degrades merely slightly. This indicates the effectiveness of
including noisy samples in the training process.

Figure 6: Impact of adding noisy samples into the training
dataset

3. Conclusion: Best model achieved
To further improve the classifier performance on both clean
and noisy test sets, we concatenate Librosa-MFCC,
torchaudio-MFCC, PNCC, LPC-40s window,
Prosody, Phonation and ComParE features. We
notice the order of features matters and the final performance

varies in the range of 3%. We shuffle the order of features and
use the shuffled features to train the classifier. We repeat 40
times to get the best model, whose performance on listed in
Table 7. Although the accuracy on the clean test set or noisy
test set is not the best compared to previous results, which may
be due to the interaction between different features, this model
achieves the best performance balance on the two test sets.

Table 7: Final Model Classification Accuracy

Dataset Classification Accuracy

Clean Train 100 %
Clean Test 91.28%
Noisy Test 72.91%

To prove the reliability of our feature set concatenated, we
test the trained classifier using a hidden clean set and a hidden
clean set, which are never used during the training and valida-
tion stage. The new result shows as follows in Table 8:

Table 8: Final Model Classification Accuracy on Hidden Test
Set

Dataset Classification Accuracy

Clean Test Hidden 87.98%
Noisy Test Hidden 74.83%

The classification accuracy looks decent and relatively
steady on both testing sets. We manage to achieve a classi-
fication accuracy of approximately 90 percent on clean testing
audio and a classification accuracy of above 70 percent on noisy
testing audio.

4. Future Work
We believe that we can achieve better classification accuracy if
we were given more freedom for the datasets. We have proven
that including a moderate amount of noisy data in the training
induces a promising accuracy for the noisy test set. We think
the classification can be more reasonable if we are capable of
using different sets of features for classification depending on
the Signal to Noise Ratio of the signal. Features have trade-offs,
thus it is almost impossible to come up with a set of features that
perform well for testing under both clean and noisy situations.
The classification can be even more accurate if we tailor the
feature set applied to the classifier depending on the noisy level
of the testing signal.
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