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Abstract

This report focuses on utilizing Electroencephalogram
signals (EEGs) collected from 9 patients to classify four dis-
tinct motor imagery tasks. We explore various deep learn-
ing architectures, documenting their impact on this classi-
fication task. We create four experiments comparing dif-
ferent models, data augmentation techniques and training
strategies. We evaluate these models on individual subjects
and across all subjects. Through all our tests, we find that
the EEG Net architecture with cosine annealing and label
smoothing reaches our highest test accuracy of 75 percent
when training and testing across all subjects.

1. Introduction

EEGs are signals obtained by recording brain functions
through the scalp [1]. Decoding these signals can enable re-
searchers to predict patients’ actions from their brains alone.

Currently, Deep learning is widely used to decode EEG
data. Convolutional Neural Network (CNN) [2] based ar-
chitectures like EEGNet have shown good performance in
classifying EEG signals for various tasks [3]. Recurrent
Neural Network (RNN) based architectures have also been
used for the classification of EEG data.

In this report, we compare the effectiveness of CNN and
RNN based architectures in processing EEG data for classi-
fication. Our aims are to answer the following questions:

• In optimizing subject 1 classification accuracy, Does it
help to train across all subjects?

• How well do our models perform when classifying
across all subjects? Were there any interesting trends?

• How does our model perform over time? Does it in-
crease as you have data over longer periods of time?
How much time is required to get a reasonable classi-
fication accuracy?

To answer these questions, we formulated four experiments
comparing various deep learning architectures, data aug-
mentation techniques and training techniques. From these
experiments, we find that the EEG Net architecture with
cosine annealing and label smoothing performs best when
classifying across all subjects. We also gained additional
insights to answer the questions above.

2. Experiment Setup
In this section, we describe our experiments and model

architectures.

2.1. Experiment 1

In this experiment, we train and test three different ar-
chitectures on our EEG data. We test these architectures
across all subjects. For this experiment, we set out to an-
swer the question: what baseline architecture leads to the
best classification accuracy across all subjects. To do this,
we implement the CNN architecture described in figure 4,
the LSTM architecture described in figure 5 [4] and then
combine these two to create the CNN + LSTM architecture
described in figure 6. To compare these architectures, we
fine tune them, finding the best hyper parameters for each
model. Then, we trained and tested them on our EEG data
across all subjects.

2.2. Experiment 2

From Experiment 1, we find that CNNs produce the best
test accuracies. Given this we compare our CNN architec-
ture from Experiment 1 with the EEGNet architecture de-



scribed in Lawhern’s paper [3]. We compare and test for
the following:

• Accuracy when trained and tested across all subjects.

• Accuracy when trained across all subjects and tested
on subject 1.

• Accuracy when trained and tested on subject 1 alone.

Doing this allows us to answer the first and second question
posed in the introduction.

2.3. Experiment 3

In this experiment, we try finding the best data process-
ing and training technique that improves the accuracy of
EEGNet across all subjects and on subject 1. The data
processing and training techniques we compared are: la-
bel smoothing, z score normalization, spectrograms, speech
processing techniques and cosine annealing. We find
that training our EEGNet with cosine annealing and label
smoothing produces the best results.

2.4. Experiment 4

This experiment was created to tackle the third question.
For this experiment, we vary our time sequence data from
100 to 1000 in intervals of 100. We evaluated the perfor-
mance of the EEGNet model across these time steps and
found that once we have sequence times greater than 300,
our model begins to perform well. Any sequence time be-
low 300 leads to poor test accuracy.

3. Results
In this section, we discuss the results of our experiments

3.1. Experiment 1

For experiment 1, we found that CNNs performed best
across all subjects. From table 3, we see that LSTM has
the worst performance of our models. We also see that the
CNN has slightly better accuracy than the CNN + LSTM.
This means that CNN architectures perform better on our
EEG dataset than LSTM and CNN+LSTM.

3.2. Experiment 2

For experiment 2, we set out to compare the accuracy
of CNN and EEGNet when: (1) trained and tested across all
subjects, (2) trained across all subjects and tested on subject
1 and (3) trained and tested on subject 1 alone. From table
1, we find that EEGNet performs best on (1) and (2).

3.3. Experiment 3

For experiment 3, we see that cosine annealing has the
best test accuracy when compared to other data augmenta-
tion and training strategies. In table 2, EGGNet + Cosine

Annealing had an accuracy of approximately 75 %. This is
better than the others. EEGNet + label smoothing also had
good performance.

3.4. Experiment 4

For experiment 4, as we vary the sequence time length
from 100 to 1000, our best model: EEGNet, performs well
starting at a time sequence of 300. The time sequence that
led to the best model performance was 900.

4. Discussion

(a) LSTM (b) CNN

Figure 1. Training and validation accuracy for two of our models

4.1. Experiment 1

From table 3, we find that CNNs perform best and
LSTMs perform worst. This is because during the train-
ing process, LSTMs have a very high tendency to overfit
our data. From figure 1, we see that the training accuracy
for LSTM increases very fast, while the validation accuracy
stays at 0.25. This shows that LSTMs tends to overfit the
data easily. The CNN architectures doesn’t have this risk of
overfitting. The training and validation accuracy increase
consistently. This is why it performs best.

4.2. Experiment 2

For experiment 2, we trained our EEGNet and CNN
model on subject 1 and on all subjects. Then we tested on
subject 1 and on all subjects. We found that when testing on
subject 1, it was better to train on all subject and than train
on subject 1 alone. From table 1, we see that EEG Net and
CNN had better accuracy on subject 1 when trained across
all subjects than when train on subject 1. This is because
by including more subjects, we have a larger and more di-
verse dataset. This means our model is able to learn better
statistics that can be generalized well.

In experiment 2, we also compare the performance of
EEGNet and CNN when trained and tested across all sub-
jects. In this test, we found that EEGNet performs better
than our standard CNN. This result can be seen in table 3.
EEGNet performs better than CNN because it utilizes tem-
poral convolutions learn frequency filters, and depthwise



convolutions to learn frequency-specific spatial. These al-
low our model to generalize well to EEG specific data [3].

An interesting trend from experiment 1 and 2 was that
models that included LSTM performed worse than models
that didn’t. This is counter intuitive since EEG signal are se-
quential signals and LSTM should be adept at dealing with
sequential data. The reason LSTM failed could be because
our dataset is small and noisy. This made it difficult for
the LSTM to learn any sequential information. CNNs per-
formed better because through the process of convolution,
we filter our data and do feature extractions. These make it
easier for CNNs to generalize better.

4.3. Experiment 3

For experiment 3, we tested various data augmentation
and training techniques. We tested label smoothing, z score
normalization, spectrograms, speech processing techniques
and cosine annealing. The results can be found in table 2.

We utilized a Short Time Fourier Transform (STFT) to
extract the frequency components of each channel. The
STFT returns a spectrogram signal, which introduces an ex-
tra dimension of features. We believed doing this would
yield better results on the EEG data. From table 2, we see
that the STFT achieves 51% accuracy. This was very bad.
This could be because our EEG signals are very noisy, lead-
ing to poor performance.

We also tried out some feature extraction techniques, de-
rived from audio processing. Since EGG signals and audio
signals share sequential properties, we believed perform-
ing audio processing techniques could yield better results.
Viewing the Linear Predictive Coding analysis serves as a
powerful tool for estimating the filter function (i.e. vocal
tract from speech signals). The cepstral coefficient is an-
other handy tool that compactly represents audio data with
coefficients relevant with signal energy and frequency am-
plitudes. Performing these data augmentations led to poor
performance on our EEG data. It seems our augmented fea-
tures lacked semantic meaning. This led to us achieving less
than 30% accuracy. The results are in table 2.

We implemented cosine annealing, an ensemble method.
It imitates the process of training multiple models and av-
eraging the results across those models. From our experi-
ment, annealing tends to find better local minimums after
loss curve plateaus. Annealing gives us a 3% boost in ac-
curacy compared to the baseline model. This makes it our
most effective regularization technique.

Label smoothing is a regularization technique that im-
proves model generalizability by preventing the model from
being overconfident about prediction. The model is encour-
aged to learn more robust features thus generalizing better
during inference. With this, we achieved a little extra per-
formance.

We performed z-normalization across the twenty-two

channels of the EEG signal so that the signals across chan-
nels are of similar distributions (zero-mean, unit-variance).
However, the z-normalization failed to improve our model.
This might be because our dataset is small. This means the
statistics used to normalize the data might have been heavily
biased by noise, leading to poor performance.

4.4. Experiment 4

From figure 2, we found that our EEGNet starts to per-
form well on our data once we have a sequence time of 300.
This means we can expect great results when we have a se-
quence time of greater than 300. From the plot, we can
see that test accuracy improves over time and then begins
to plateau after 300. This means that the minimum time
required to get great classification accuracy is 300, and we
don’t need longer sequence times to classify well. If we
want best performance with our EEG model, the best se-
quence time is 900. This resulted in the highest accuracy on
EEGNet.

The reason we get these results could be because EEG-
Net is able to successfully learn information from the noiser
part of the EEG data. This means by having longer se-
quence, the model is able to extra information that gener-
alize better.

5. Conclusion
Through all the experiments, we arrived at the best

model for classification tasks on the EEG dataset. The best
model was an EEGNet trained with consine annealing
and augmented with label smoothing. This model led to
an accuracy of 75%. The training and validation accuracy
plot of our best model can be found in figure 3.
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Model Training Dataset Test Accuracy
Subject 1

Test Accuracy
All Subjects

EGG All 0.5 0.72
Sub 1 0.42 N/A

CNN All 0.46 0.68
Sub 1 0.44 N/A

Table 1. Experiment 2: This table displays the models, respective
hyperparameters, and the testing accuracy for subject 1 and all
subjects for both EEG and CNN models. The hyperparameters for
EEG is batch size of 64 and a number of epochs set to 50, whereas
for CNN, the batch size is 64 and the number of epochs is 60.

Figure 2. The accuracy versus different time truncation

Model Strategies Param
Dataset

Test
Accuracy

Test
Time
(sec)

CNN
(Baseline
accuracy:

0.68)

STFT
Batch size=64

Num epochs=50
All Subjects

0.51 0.44

EEG
(Baseline
Accuracy:

0.72)

LPC + Cepstral
coefficients

Batch size=64
Num epochs=50

All Subjects
0.26 1.52

EEG Cosine
Annealing

Warm restart after
every 10 epochs
Batch size=64

Num epochs=50
All Subjects

0.75 0.21

EEG Label
Smoothing

Batch size=64
Num epochs=50

Subjects 1
0.72 0.20

EEG Z-score
Normalization

Batch size=64
Num epochs=50

Subject 1
0.68 0.24

Table 2. Experiment 3: This table compares different data aug-
ment strategies, and corresponding test accuracy and test times.

Model Param Overall
Test Accuracy

CNN
Learning rate=5e-4

Batch size=64
Num epochs=60

0.69

LSTM

Learning rate=5e-4
Hidden size=128
Num layers= 3
Batch size=64

Num epochs=60

0.30

CNN+LSTM
Learning rate=5e-4

Batch size=64
Num epochs=60

0.65

EGG Net
Learning rate=1e-3

Batch size=64
Num epochs=50

0.72

CNN+
STFT

Learning rate=5e-4
Batch size=64

Num epochs=50
0.51

CNN+
LPC+

Cepstrum

Learning rate=5e-4
Batch size=64

Num epochs=50
0.27

EEG Net+
Cosine

Annealing

Learning rate=1e-2
Batch size=64

Num epochs=50
Warm restart after
every 10 epochs

0.75

EEG Net+
Label Smoothing

Learning rate=1e-3
Batch size=64

Num epochs=50
Label smoothing=0.1

0.72

EEG Net+
Z score normalization

Learning rate=1e-3
Batch size=64

Num epochs=50
Label smoothing=0.1

0.68

ResNet [5] Learning rate=5e-4
Batch size=64 0.56

MLP+Autoencoder [6] Learning rate=5e-4
Batch size=64 0.36

Table 3. This table summaries various models, as well as the em-
ployed data augmentation techniques, their corresponding hyper-
parameters and overall test accuracy across all subjects.

(a) (b)

Figure 3. (a). The training and validation accuracy for our best
model. (b). The corresponding confusion matrix



Figure 4. CNN Architecture

Figure 5. LSTM Architecture

Figure 6. CNN + LSTM Architecture

Figure 7. EEG Architecture

Figure 8. Resnet Architecture

Figure 9. AutoEncoder Architecture

Figure 10. MLP Architecture
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