
Flat Panel Smart Speaker

Ben Kevelson, Jun Qiu, Julia Weinstock, Zilin Zeng

Faculty Advisors: Dr. Michael Heilemann, Dr. Sarah Smith, and Professor Dan Phinney

University of Rochester Department of Electrical and Computer Engineering

Audio and Music Engineering Senior Design Project

May 8th, 2022

1

I. Introduction

A. Problem Description

Flat panel technology has been an emerging field of research at the University of

Rochester over the past few years, and recent developments have shown the promise of flat

panels as acoustic surfaces. This project aims to demonstrate the multifaceted capabilities of flat

panel technology by building a standalone smart speaker, which utilizes a compound speaker and

microphone on a single panel. The speaker should be able to handle voice commands from the

user, such as playing and pausing music, getting the weather, and setting timers.

Commercially available smart speakers, such as the Apple Homepod mini, are usually

cylindrical or round in shape, and are advertised to sit on the counter or shelf in the consumer’s

home [1]. An advantage of a flat panel smart speaker is that it has a relatively slim profile and

can be mounted on a wall to take up minimal counter space. Popular smart speakers contain

speakers and an array of microphones to play and detect sound in all directions. The flat panel

can be used both as a speaker and a microphone, and can exploit fixed boundary conditions to

utilize only a single sensor to detect sound, rather than an array.

B. Background on Flat Panel Technology

The basis of using flat panels as a speaker hinges on the acoustic properties of flat panels

themselves. Usually built out of materials such as acrylic, glass and gatorboard, flat panels can

then be mounted on a rectangular frame. Under these conditions, the frame can be assumed to act

as a sort of “infinite baffle”, meaning that the area within the frame is the only relevant part when

talking about vibrations. In order to induce vibration on the panel surface and create sound,

driver devices are mounted on the rear of the panel’s front-facing surface, and can then be

manipulated via electric current to vibrate; the subsequent vibration of the panel’s surface creates

sound. Additionally, external sound sources can also induce vibrations in the panel, which can be

interpreted as sound via a piezoelectric sensor which is also mounted to the rear of the panel. For

our purposes, these are the main functional components of a flat panel loudspeaker. One of the

main advantages of this technology is that the panel surface can act as both a speaker and a

microphone due to its capability to both receive and create sound.

2

Although the nature of flat panel speakers gives them certain advantages over

conventional speakers, there are shortcomings in other areas. Using a non-optimized driver

configuration, a flat panel speaker is going to have a less consistent frequency response and

loudness level compared to popular alternatives, particularly when talking about low frequencies.

In order to compensate for this, researchers at the University of Rochester use an array of drivers

arranged in predetermined locations on the rear of the panel. By hooking them up together such

that they emit the same signal, the drivers are able to cancel certain modes of the panel’s

vibration, which can accentuate lower modes and bring more consistency to the panel’s

frequency response. Another driver can then be placed in another predetermined location to

control higher frequencies. When used in tandem with a software-based crossover network to

split output signals into high-frequency and low-frequency streams (see Section II-B for more

details on the crossover network), this specialized driver setup is able to improve on the general

frequency response of the panel, particularly for lower frequencies.

While our project aims to use flat panel technology as a vessel for a smart speaker device,

the potential of the technology remains largely speculative. Recent research from the University

of Rochester has shown that flat panel devices are able to effectively extrapolate the direction of

arrival for incident sounds using one or more sensors, which could have massive applications

within the realm of a flat panel smart speaker. Many smart assistants on the market already use

“directed listening” to tune out irrelevant sound sources when listening for commands, and flat

panel technology could feasibly do the same thing. However, due to the emergent nature of the

research and the limited timeframe of our project, we were unable to attempt implementation of

these methods in our smart speaker.

Another potential use for flat panels is as a haptic interface. While this is beyond the

scope of our work specifically, research out of the University of Rochester has shown that flat

panels can be effective in extrapolating touch location on a panel’s surface using a driver array

mounted to the rear. This is another application that could potentially have uses for a smart

speaker in the future, as it could allow for users to interact with the speaker using touch without

the need for traditional buttons and interfaces. Much like the previous research, however, there is

much work to be done in this area and the technology was not ready for immediate use.

All in all, flat panel speakers are an older concept that has been brought back into the

light by new research and breakthroughs. Due to the nature of their limited use and circulation,

3

we suspect there are many advancements that are yet to be made in their development and

optimization. Our project attempts to highlight a few of the panel’s capabilities, and showcase

the potential of the technology in consumer use.

C. Proposed Solution

The flat panel smart speaker needs to be a duplex system in terms of its hardware. It

needs to have drivers attached to the back of the panel to make the panel sound by pushing the

membrane back and forth (just like how a loudspeaker cone operates with a vibrating

diaphragm). It needs a piezo mounted to the back of the panel to receive the vibrations on the

panel (just like how a microphone records sound by detecting vibrations (pressure change) on its

diaphragm). The software for the speaker needs to include a music cancellation program to

cancel out interfering noise in the speech and a voice transcription program to transcribe the

user's speech. After speech transcription, our smart speaker should be able to respond to the

user’s commands by playing the user-selected music or answering simple questions related to

time and weather. The hardware and the software should be bridged with an audio interface, and

our software should be installed in a PC or in a Raspberry Pi.

D. Constraints

Over the course of building flat panel smart speakers, there were several limiting factors

that impacted the proceeding of our project. First of all, the fact that all the matlab codes we

wrote can only be tested after our actual panel is built consequenced to insufficient amount of

debugging time. Although we ran simulations and made sure the code works in our simulations

of an actual panel. There were plenty of unexpected problems that took us a lot of time to fix.

Second of all, the use of IBM Watson voice recognition service requires a price and we only had

one account that is paid by the school, which means all the code for the panel assistant also can

not be tested. Hardware wise, the PBC, printed circuit board, of the piezo amplifier that we

designed and ordered took weeks to arrive. For demo day, we had no choice but to use the perf

board version of our piezo amplifier.

E. Impact

Before starting work on the project, we first took into consideration the potential long and

4

short term impacts of this project.

The global impacts of this project are mainly centered around the promise of flat-panel

technology. If we assume that the flat-panel smart speaker were to be widely used globally, it

would likely bring innovation to the way that speakers and audio devices are designed, as well as

changing the way hardware is designed. Additionally, the other applications of flat-panel tech

may also come to impact the world once it is adopted globally, such as waterproofing for

electronic devices, innovations in haptics, and advancements in source detection.

The economic impacts of this project could be quite large in theory, as there is a growing

multi-million dollar market for home audio devices. If the flat-panel smart speaker were to be

successful commercially, it would likely have a stake in that market, and could even drive other

manufacturers to pursue similar ideas and applications of flat-panel technology.

The environmental impacts of this project are mostly centered in the manufacturing, as

the material choices could have large environmental impact if the speaker were to ever go into

mass production. For instance, materials such as acrylic (which has been explored as a panel

material for this project) is not generally considered environmentally friendly. On the other hand,

glass (which has also been looked into) is much more environmentally friendly and is 100%

recyclable. These considerations need to be weighed against performance and taken into account

for the final model, as well as other material choices such as the frame, drivers, sensors, and

electronics.

The social impacts of this project are less obvious. One could argue that the social impact

would be seen in the perception of this technology, and how consumers view the functionality of

their technology. The most pressing impact is the virtual assistant’s interaction with consumers

and how that could potentially shape how people interact with intelligent conversational agents.

II. Technical Challenges and Solutions

A. Software

1. Virtual Assistant

The software components of this project hinge largely on the use of a virtual assistant

software, which handles all the voice recognition, responses, music/sound playback, etc. Many

smart speakers/virtual assistant devices on the market use their own virtual assistant software,

such as Amazon’s Alexa and Google Assistant. These softwares are finely tuned for the

5

hardware parameters of their respective devices (Amazon Echo and Google Home respectively),

and are highly advanced in their natural language processing and interactive capabilities. Our

initial goal for this project was to use the open source version of one of these softwares, which

companies like Google and Amazon release on the internet for free. A previous iteration of a flat

panel smart speaker designed in the summer of 2021 used the Alexa open-source software loaded

onto a Raspberry Pi 4 Model B microprocessor. The input and output was interfaced through the

necessary hardware components to ensure performance and functionality (see Section II-B for

more details on the hardware configuration), and the device was able to perform most of the

basic functions of a virtual assistant (See Figure 1 below).

Figure 1: Hardware setup for the previous implementation of a flat panel smart speaker.

The intent of our project was to expand on the shortcomings of the previous model, and

optimize the panel performance based on new research from the University of Rochester. In

particular, the main shortcoming of the previous model was an inability to play music on

command (as in, “Hey Alexa, play Bruno Mars”). This was due to the fact that the open-source

demo of the Alexa technology does not have Spotify connectivity, which is what the real Alexa

software uses as its music API. We explored various roundabouts to this issue, such as hacking

the source code with our own Spotify API key, as well as loading in our own music library and

creating a custom set of commands that would queue them. Ultimately, this proved unsuccessful

due to the nature of the Alexa open-source demo – much of the code and functionality is locked

within their cloud service, and the user end implements streaming connectivity to access that

processing in such a way that casual users would be unable to edit certain operative components

of the source code. We also explored the potential of the Google Assistant software for

6

application within the panel assistant, but encountered many of the same problems as with the

Alexa software. We were ultimately unable to make any major progress using the Google

Assistant, so we abandoned that software and pursued other avenues.

Another reason the open-source software was a nonviable option was that the

cloud-based nature of the software prevented us from optimizing the program for panel

technology specifically. One of the major hurdles of the project, the real-time cancellation of

played music (see Section II-A-3 for more details on the real-time cancellation implementation),

was a component that we felt was best implemented within the software of the virtual assistant.

Any optimizations or changes we would have to make within the code would have to be in

post-processing on the output/input streams of the Alexa software, which was difficult to

intercept within our hardware and brought about many technical challenges. For these reasons,

we ultimately decided to abandon the open-source virtual assistant demos, and pursue a

customized avenue for our virtual assistant software needs.

This brings us to “panelassistant.m”, a MATLAB program developed in-house for the

specific challenges that flat panel smart speakers present (panelassistant.m will be referred to as

Panel Assistant for clarity’s sake). This was designed largely by Tre DiPassio, and we can’t

express enough how pivotal his contributions have been to the progress of this project. The

program uses the IBM Watson Text-to-speech API as a transcription method, and employs

hard-coded response messages that are turned into voice responses via the IBM Watson API

(Appendix A). Once the text from the user is transcribed, the program uses string comparison to

estimate the pre-coded command that the input command is most similar to (Appendix B).

Additionally, pre-processing code is implemented in order to recognize the wake word (we used

“Alexa” in order to demonstrate the comparability of our product with mainstream market

competitors, as well as its recognizability by the IBM Watson service) as well as format the input

string for comparison. This includes methods to clip the wake word from the input command, as

well as turning numerical characters into spelled-out numbers (Appendix C). A post-processing

function is also present, which categorizes the expected command using confidence scores and

index numbers and validates the estimated command by parsing it for keywords pertaining to

each of the dictionary commands (Appendix D). Once the processing portion is finished, the

recognized command is run through the general command function, which can perform various

7

tasks based on the command such as creating and running timers, mathematical operations, witty

quips about sports and niche references to members within the sphere of the project, and more.

The program can also play music based off of input commands, which was a core focus

of the project and one of the biggest hurdles we encountered. Since our own program was not

subject to the software restrictions that the open-source programs were prone to, we were able to

load in our own music files downloaded from the internet and adapt the dictionary commands to

include play requests for individual songs and various artists. Since the functionality required for

this process is unique and differs from the scope of the other general commands, we made our

own play function (Appendix E) which queues songs based on the input command and initializes

objects within the Panel Assistant code for real-time playback and cancellation measures (see

Section II-A-3). If a play command is triggered, an internal flag is also tripped which changes the

listening loop to a program that would implement active cancellation. Once the song finishes, the

flag would be reset, and the listening loop would return to a normal method.

These features make up the main functionality of the Panel Assistant software. Although

there is more code that does not exist in the documentation as well as additional helper functions,

the referenced code and operative sections make up the majority of the functionality. Additional

improvements to the software could be made, in the sense that the Panel Assistant software does

not really have any user-end natural language processing capabilities. The transcription of the

speech is all handled through the IBM Watson API, so the tuning of the AI itself and the

transcription process is largely inaccessible by our team and we are unable to make edits to it.

This presents some logical difficulties, because all of the input command processing we do is

based on the text transcription, which limits our ability to tune the process for accuracy and

versatility of speaking styles. For instance, the dictionary keys contain certain commands that are

repeat versions of other commands, or are a variation of how one could feasibly say it (See

Appendix F). For these sorts of cases, the program cannot adaptively interpret the spoken phrase

and instead relies on a variety of finely-tuned text string comparisons. This makes it hard to

adapt the model to a larger range of commands and uses, since all of the command phrases are

hard-coded into the dictionary.

Another shortcoming of the software is due to the nature of its implementation in

MATLAB. Since it is a higher level scripting language, implementation onto a smaller piece of

hardware such as a microcontroller or a digital signal processor would be significantly more

8

difficult. The final setup of our project used MATLAB running on a Mac laptop, which is very

bulky and not suited for out-of-the-box consumer use. A future version of this project could

transcribe all of the code’s functionality into Python or another language that can be easily

implemented onto smaller hardware. Indeed, many of the function calls within the Panel

Assistant software are imported from Python libraries anyway, so it makes sense that there would

be some cross-compatibility between the languages. The optimal language may actually be

something that runs ‘closer to the metal’ (such as C), specifically when talking about the

processing intensity of the real-time cancellation (see Section II-A-3). However, there may be

other roadblocks standing between a code translation from MATLAB into another language, so

the concept went unexplored within our timeframe.

2. Crossover Network

In order to select a reliable crossover network for the flat-panel smart speaker, we did

research on various types of crossover network that are available for our use, active crossovers,

passive crossovers, and DSP (digital signal processing) crossovers. An active crossover splits

audio signal into different frequency bands before sending each band to its dedicated amplifier,

therefore it is installed between the audio source and the amplifiers. An active crossover

processes line level audio signals at its input, which opens up possibilities of utilizing op-amps in

their design and have less robust inductors, capacitors and resistors. However, due to its features

of filtering signals before amplification, each frequency band and driver is assigned to an

individual amplifier. This arrangement prevents energy waste by only amplifying frequencies

that will ultimately be reproduced by the driver. At the same time, it guarantees more control

over the volume and sometimes frequency of the input signal going into different amplifying

stages. Another feature worth mentioning is that the use of active crossover simplifies the

matching of impedance between the amplifiers and drivers. Also, an active crossover requires

external power supply due to the presence of an operational amplifier.

On the contrary, a passive amplifier splits audio signals into different frequency bands

after the signals are amplified, which means it is installed between the amplifiers and drivers. As

a result, passive amplifiers are dealing with already-amplified signals, which greatly increases its

possibility to overheat, even failing when the signal is too high. Also, since the input signal for

passive crossover is so hot, it has to contain robust electronic components. However, one benefit

9

that passive crossover has over active crossover is the fact that a passive crossover does not

require external power supply since it is mainly made of passive electrical components including

inductors, capacitors, and resistors. In terms of control, passive crossovers are often designed to

work at specific crossover points and are often made from specific speakers, which in our case

could be beneficial due to the fact that we know exactly which exciter to use. The graph in

Figure 2 is a chart of pros and cons of two types of crossover network.

Figure 2: Comparison between active and passive crossovers [2]

Using an active crossover seems like a more reliable solution to our crossover network

problem compared to using a passive crossover. Although active crossover requires external

power for an operational amplifier and multiple amplifiers for drivers, it is relatively more

reliable and functional since it deals with line level audio signal and at the same time, allows us

to manipulate volume at each band. On the contrary, a passive crossover does not require

external power to function, but it needs more robust components since it deals with high voltage

input, and we do not have any control over volume of each band. Although both active and

passive crossover have their own specialities, the question of whether one of these two types of

crossover network is actually what our team is looking for raises as we do more and more

research.

10

Figure 3: Signal flow for the flat panel smartspeaker

From Figure 3, we can see that there is one step that the signal flows from a piezo

amplifier to an analog to digital converter, which opens up the field of digital signal processing

crossover network to our team. A digital crossover divides the audio signal into multiple

frequency bands on a digital level. It requires an Analog to Digital converter for it to function.

Since we are using an audio interface in the first place, the problem of AD conversion is no

longer within our concern. Using a digital crossover is very similar to using an active crossover.

It has almost all the advantages an active crossover network has. On top of that, it does not

require external power supply since we are using an interface. We also have the privilege of

constimizing parameters of the crossover with ease. Due to the difficulty of knowing the exact

crossover frequency before the panel is built, using a digital crossover network gives us the

freedom to start with coding the crossover program using an estimated cutoff frequency first.

Unlike an active or passive crossover which we have to know the exact crossover frequency

before building the network.

In terms of coding the crossover network in matlab, we used the crossoverFilter System

object to implement an audio crossover filter for splitting audio signal into two frequency bands

with a crossover frequency of 825 Hz, which we measured to be the optimized crossover

frequency of our panel using a vibrometer.

There are four parameters that we can adjust in the crossoverFilter function,

‘NumCrossovers’, ‘CrossoverFrequencies’, ‘CrossoverSlopes’, and ‘SampleRate’. In our case

11

we simply set ‘NumCrossovers’ as 1 because we are dividing the entire frequency range into two

frequency bands, so the number of magnitude response band crossings is one.

‘CrossoverFrequencies’ in our case is 825 Hz. ‘CrossoverSlopes’ determine the rate at which the

audio level increases or decreases per octave as the frequency increases or decreases. The scalar

number of slopes is not one of the decisive factors that affect the overall audio quality,

12dB/octave and 24dB/octave are all good starting points. We happened to choose 48dB/octave.

‘SampleRate’ is consistent throughout the program, and in our case is 44100 Hz.

3. Music Cancellation

As mentioned previously, the main purpose for this project was to make a smart speaker

that can demonstrate the technological capabilities of flat panel technology, meaning both their

ability to act as a conduit for a smart assistant as well as a quality speaker. The obvious choice

for doing this was to add music commands to our smart assistant, as almost all smart assistants

on the market today have Spotify or Apple Music connectivity so the device can interpret

commands such as “Alexa, play Bruno Mars”. Since all smart speakers generally have both a

built-in speaker and microphone (which is obvious given the nature of smart devices), the

microphones need to be able to interpret new commands while also playing music. While this

seems like a trivial problem at first, the device actually needs to be very well tuned in order to be

able to receive new commands while playing music with comparable levels of clarity to when it

isn’t playing music.

To this end, modern smart speaker devices implement real-time cancellation algorithms

which are specific to the acoustic parameters of the devices themselves. While the exact

mechanisms of these algorithms are protected behind the cloud services of their respective

companies, it logically pertains to the fact that the device knows the music signal it will be

playing through its own speakers. The microphones also receive this sound, and need a way to

cancel that from the input stream so it hears everything besides the music playing. Some methods

for doing this include pure subtraction (replacing the input at the microphone and directly

subtracting the estimated music signal from said input), spectral subtraction (a similar method

which instead subtracts an estimated noise spectrum from the input spectrum, then reconstructs

the subtracted signal into time domain), and machine learning-based approaches.

12

In the context of flat panel smart speakers, this presented a large challenge to our team,

since a method of real-time cancellation has not yet been implemented onto a flat panel device.

We surmised that a pure subtraction based method could be very effective in flat panel smart

speakers, since the piezo sensor and the driver devices are in fixed positions. This means that the

delay between the drivers playing the music and the sensor receiving the music should be a

constant value, and a convolution of the panel’s prerecorded impulse response with the played

music signal could be an accurate representation of the signal that the sensor sees when playing

music. An experiment was performed in MATLAB using an analog setup of a cone speaker and

flat panel speaker. The flat panel was equipped with both drivers and sensors, and played various

types of music which the sensor received. An external cone speaker then played spoken phrases,

with the aim to decode a clean version of the spoken audio from the sensor input. We then

designed a program that would attempt to isolate the spoken phrases from the music played

through the panel by means of pure subtraction (Appendix G). The program uses a

cross-correlation function in MATLAB, which compares the input at the sensor with the raw

music file, to estimate the delay between the sensors and the drivers. A variety of sample values

are tested to find the value that minimizes the cross-correlation between these two signals, as

well as an optimization for gain values of the estimated output. Once the optimal gain and delay

values are found, the delay and gain are applied to the known output signal and subtracted from

the input at the piezo sensor. Figure 4 shows the result of the alignment of the signals:

13

Figure 4: Graph showing the alignment of both signals.

As the graph shows, the alignment method between the recorded audio and the estimated

output is quite effective. Use of the pure subtraction method yielded clearly intelligible speech

which the IBM Watson API was able to consistently interpret, and this validated our decision to

use pure subtraction methodology for real time cancellation.

Once we had confirmed the potential for pure subtraction in flat panel technology, we

created a program that more closely resembled real time cancellation (Appendix H). As opposed

to the previous experiment, this setup uses audio read in from a longer file on a frame-by-frame

basis. This more closely simulated the frame-by-frame nature of the input audio stream coming

from the sensor. One new concept we implement in this program is the use of a helper class,

AssistantAudioHandler.m (referred to hereafter as AAH). The reason we originally designed this

class was to consolidate audio functionality in Panel Assistant such that all the audio related

functions were in a single, easy-to-read file. In particular, certain audio functions such as sound()

and soundsc() were utilized in the first build of Panel Assistant, which presents a problem for

real-time cancellation since they pause the whole program in order to run an entire audio file. In

14

order to fix this, we implemented an audioDeviceWriter object, which writes audio data to the

output on a frame by frame basis, which would be a big structural improvement for when we

attempted to implement real-time cancellation. Another major usage of the AAH class was an

internal circular buffer (Appendix I). The reason we built a circular buffer within AAH is also for

the cancellation, so we could store delayed frames and have a place to extract them from. Our

function takes a delay value as an input, and extracts a frame from the buffer delayed by that

value. We also utilize index shifting in order to extract frames that are delayed by such an

increment that they are beyond the indices of the buffer length. Other functionality exists within

AAH, such as writing frames to buffers and functions for playing audio, but these are not shown

for sake of consolidation and the fact that they are pretty straightforward.

Once AAH was designed and tested, it was folded into the real-time cancellation

simulation. The program receives audio from the pre-recorded files on a frame by frame basis,

then stores the played music into a buffer. The frames are then extracted and delayed by the

predetermined sample value, adjusted by the optimal gain levels, and subtracted from the dirty

piezo input signal (one important thing to note that will become relevant later is that the raw

music signal was pre-convolved with the impulse response for the purposes of cancellation).

Each canceled frame was then written to an output array and saved. Figure 5 shows the result of

the real-time cancellation simulation using spectrograms of the recorded input, the estimated

music signal, and the isolated speech.

15

Figure 5: Spectrograms showing the result of isolation of the spoken phrases.

16

As the spectrograms demonstrate, the real-time simulation for subtraction of the music

signal from the piezo input was highly effective. The extracted speech signal was extremely

intelligible, and easily able to be interpreted by the IBM Watson API. This was a big

breakthrough for our work, as it seemed the cancellation method we originally concocted held

merit for our purposes after all.

The next and final step, as well as the most difficult one, was to implement real-time

cancellation into Panel Assistant. This posed a lot of logistical challenges for our group – at this

point in the project, we were only a few weeks out from the design day deadline. Due to the

difficulty of this and the necessity of having a flat panel device fully built in order to test this, the

real-time cancellation in Panel Assistant was not able to be tested at all until less than 48 hours

away from the mock design day. The method was to be very similar to the real-time cancellation

simulation, storing the played audio into a buffer and processing it in such a way that it can be

subtracted from the piezo input on a frame by frame basis. Convolution between the played

frame and the impulse response of the panel was also going to occur on a frame-by-frame basis,

which eventually became a roadblock for our efforts. On the basis of an iteration of a single

frame, we intended to do the aforementioned convolution, as well as crossover processing for the

output channels and the subtraction method all in one go. This became very processing intensive

for a single frame of size 1024 (samples), and we feared that this intensity would cause the

program to either drop/distort samples of the input or output stream. We instead opted to

pre-convolve the audio files with the impulse response of the panel, as well perform the

crossover processing beforehand. This saved a lot of processing intensity off of the listening

loop, and seemed like a much better approach for feasible real-time cancellation.

A major issue that arose in the 48 hours prior to the mock design day was a discrepancy

in the fidelity of the impulse response measurement. When it seemed that the real-time

cancellation was not working within Panel Assistant, the team opted to re-examine our methods

to find malfunctions in our concept. After analyzing the estimated music signal overlaid with the

actual piezo input, it was suspected that a faulty impulse response was a contributing factor to

the lack of functionality. Figure 6 shows a graph of the current impulse response as well as a

known clean impulse response.

17

Figure 6: Our IR vs. a clean control IR

As the graph demonstrates, there is clearly visible noise in the impulse response

measurement of our panel. We suspect this was due to hardware limitations, such as noisy

interfaces, or some kind of other extraneous factor. Regardless, this was discovered a few hours

before the mock design day, presenting a massive hurdle for the cancellation method. The pure

subtraction method is very susceptible to misalignment and errors, so a noisy IR such as the

aforementioned one is not suitable for real time cancellation. Thus, due to extreme time

restrictions, we were unable to successfully implement real time cancellation into Panel

Assistant. We instead opted for a ramshackle solution of playing audio using commands, but not

receiving new commands while playing. The program instead has a button on the laptop UI that

allows the user to end the song with any button press and revert to a normal listening loop. A

future implementation of this model would probably be able to use real-time cancellation based

on our methodology, if the impulse response is re-measured and an adequate time is available for

troubleshooting. If the method were to be implemented successfully, it would signify a big leap

18

forward in the use of flat panel technology as an alternative to current smart assistants on the

market.

B. Hardware

Because the flat panel used for the speaker was provided to us, this section will only

discuss the hardware used and applied to the panel for signal processing, and not the flat panel

itself. A discussion on the physical panel can be found in Section II-C. The hardware

implementation for this panel was based on previous implementations and research into flat

panel smart speakers performed in the vibroacoustics lab at the University of Rochester. There

are six main components in the hardware signal flow: (1) Piezoelectric vibration sensor, (2)

Piezo amplifier, (3) Power Amplifier, (4) Treble Driver, (5) Bass Array, and (6) Digital interface.

Figure 7 shows the block diagram for signal flow and interaction and integration of the hardware

with the software, and Figure 8 shows the final implementation of all of the hardware as it was

installed on the back of the panel. The proceeding sections will discuss each component of the

hardware in greater detail.

Figure 7: Block diagram of the hardware implementation and signal flow

19

Figure 8: A picture of the hardware as implemented on the flat panel. Each component corresponds with the block

diagrams shown in Figure 8. I) Piezoelectric sensor, II) Piezo amplifier, III) Power amplifier, IV) Bass Driver Array,

V) Treble driver, VI) Interface

1. Piezoelectric Sensor (I)

The ceramic piezoelectric sensor attaches to the back of the panel and together they

function as a microphone to detect voice commands. It does this by detecting the vibration of the

panel as sound waves excite it. This is a key advantage of the flat panel technology, because it

can act as both a microphone and a speaker. Initially, the sensor we used to detect speech was

very small, only about 3 centimeters. The signal recorded from the small sensor was extremely

noisy. The fidelity of the sensor is essential to implementing a system that can understand and

execute voice commands. So, in order to increase signal-to-noise ratio (SNR), we experimented

with increasing the size of the piezo sensor.

We tested three different sizes of piezo amplifiers, which can be seen in Figure 9. As in

Table 1, preliminary tests showed that as size increased, preliminary tests showed that the SNR

of the recordings also increased. Therefore, we chose to use the largest piezo sensor in our final

20

design. Recordings of each of the sensors can be found in Appendix J.

Figure 9: Three sizes of piezo sensors attached to a test panel. From left to right is the smallest piezo sensor, the

middle size, and the largest piezo we tested.

Table 1: SNRs recorded from each sensor

Size (relative) SNR (dB)

Small 0.49

Medium 6.03

Large 22.06

2. Piezo Amplifier (II)

Because the piezo sensor is ceramic, it has a relatively high impedance. So, it was

necessary to attach the piezo sensor to an amplifier circuit to slightly increase the gain, match

impedance to the interface, and filter the signal to eliminate unnecessary noise.

We first evaluated the circuit that was used in previous prototypes of the flat panel smart

speaker (Figure 10). In testing this circuit, we found it was inconsistent and unreliable. It would

stop working seemingly at random. Furthermore, it was complicated and required the use of a

virtual ground in order to operate.

21

Figure 10: The piezo amplifier circuit implemented in previous prototypes.

We began looking for simpler implementations of a piezo amplifier. We decided to use

the circuit proposed in [3], as it was simple, effective, and only required a 9V power source. We

modified the circuit slightly. The final circuit can be seen in Figure 11.

When this circuit was first prototyped on a breadboard, it was extremely noisy. This was

due to a few factors. Breadboards are inherently noisy, and the power rails were acting as

antennas and picking up outside noise. Additionally, the wires that connected the piezo to the

amplifier were very long and unshielded, which further increased noise. This was easily fixed by

prototyping the circuit on a perfboard and reducing the length of the wires attached to the piezo

as much as possible.

22

Figure 11: The final piezo amplifier design, modified from [3].

3. Power Amplifier (III)

Considering the impedance from the loudspeaker drivers, the output signal directly from

the audio interface is not powerful enough to drive the speakers; thus, we need a power amplifier

that converts a low-power signal to a higher power one. By boosting the output signal current to

a nominal level, the speaker drivers can operate.

We first assumed that our power amp should generate 40W (general wattage for a

loudspeaker), and we looked into two types of power amps for our selection: class AB power

amp and class D power amp.

23

Class AB, as seen in Figure 12 is the most common type for audio power applications

since it achieves almost no crossover distortion. If one seeks high fidelity (HiFi) quality for the

loudspeaker, he(she) may go after a class AB power amp. Yet, there are the trade-offs for the

amp’s audio quality, the biggest of which is its low power efficiency. Class AB power amplifier

has a power efficiency of 75%; that 25% power transferred to heat requires a huge heatsink to

dissipate. Furthermore, one needs a larger power supply for a class AB power to make up for its

low power efficiency. The bulkiness of the class AB power amp increases the cost and makes it

more challenging to fit it onto the back frame of the panel.

Figure 12: Circuit for a Class AB Power Amplifier

A class D power amp, as seen in Figure 13, is a more efficient in power compared to a

class AB power amp. Class D power amps typically have a power efficiency of 90%, achieving

outstanding heat control. Cost and space can be drastically saved by selecting a class D power

amp. As long as an acceptable sound quality could be achieved, we would prioritize using a class

D power amp.

24

Figure 13: Circuit for a Class D Power Amplifier

We first looked into power amp boards available in the lab since it would be less

time-consuming if we could find a suitable amp off the shelf than spinning a circuit board on our

own.

We started with a Sure Electronics AA-AB32165 class D power amp [4].

Sure Electronics AA-AB32165 (Figure 14)

- Power: 2x25W at 6 Ohm

- Type: Class-D

- Gain: 21.6dB / 27.6dB / 31.1dB / 33.6dB depending on the switch

- Dimensions (mm): 110.2 L x 68.6 W x 16 H

Figure 14: Sure Electronics AA-AB32165 Power Amp

25

Before applying it to our flat panel smart speaker, we tested the amp on the KEF LS50

loudspeaker. We connected the power amp board to a laptop using an RCA stereo to ⅛ inch cable

and connected the loudspeaker to one of the two power amp outputs. We figured out that 25%

volume on the laptop could drive the loudspeaker to a nominal volume if the power amp was set

to a gain of 21.6dB (shown in Figure 15.) An LS50 loudspeaker’s nominal impedance is 8 Ohms,

which is a higher impedance compared to the flat panel smart speaker since we designed each

channel (bass-mid frequency driver array and treble frequency driver) on the panel to have 4

Ohms impedance. If the power amp can drive an 8-Ohm-loudspeaker, it should be able to drive a

4-Ohm one as well.

Keeping that in mind, we then applied the power amp to a single-driver panel

loudspeaker (4 Ohms in impedance) and tested the proper setup for it. The panel loudspeaker has

an impedance of 4 Ohms and we used a DC power supply set to 16V-0.3A to drive the power

amp up.

Figure 15: Sure Electronics AA-AB32165 Power Amp Gain Options

We remained to use 21.6dB in power amp gain. We tested this setup using the Beatles’

“Penny Lane” (video can be found in Appendix K.) This song had a loud piccolo solo in the last

chorus section, where a lot of power would be drained from the power source to drive the

speaker to operate. Throughout the test, we had guaranteed that under this setup, even 100%

volume on the laptop would not burn the loudspeaker driver. Nevertheless, the size of this

AA-AB32165 is too large to fit onto the back frame of the panel. Thus we decided to look for a

power amp board smaller in size.

Sure Electronics AA-AB32261 [5]

- Power: 2x150mW at 8 Ohm

- Type: Class-AB

26

- Gain: 15.7 dB

- Dimensions: 3" L x 2" W x 5/8" H

Figure 16: Sure Electronics AA-AB32261 Power Amp

We went through the same test using an AA-AB32261 power amp board (shown in

Figure 16). This power amp is smaller in size but it’s also low in power. We had figured out that

power was enough for our drivers. Having the test data from the previous amp, we applied this

power amp board to our flat panel smart speaker. Though low in power, this 150mW power amp

could still drive the speaker drivers to a nominal level under the 16V-0.3A power supply. The

small size of this power amp also saved up a lot of space when we mounted it to the back frame

of the panel, which is why we finally decided to use AA-AB32261 for the power amplification

(III).

4. Driver Positions (IV and V):

The vibration position can be critical for a membrane. A simple example would be a

drum. When the drummer’s drumstick hits the center of the drum surface, the drum generates a

full and bassy resonant tone; whereas when the drumstick hits the edge of the drum, the drum

generates a short and sharp high-pitched sound. The reason for it is that membranes have modes,

and each mode possesses a unique resonant frequency based on the membrane’s physical

dimension. Our flat panel smart speaker acts as a rectangular membrane acoustically. It is fixed

along all four edges since we had the rectangular Gatorfoam board (panel) embedded in a

wooden frame. The mode shapes (standing wave vibration patterns) Ψ for a rectangular

membrane of width Lx and length Ly can be calculated based on the following equation [6]:

27

In this equation, (m, n) is called the mode shape identifier, which refers to the number of

humps (antinodes) in the x and y directions, respectively. For example, Figure 17 shows how (1,

1) mode, (2, 2) mode, and (4, 4) mode look like on a rectangular membrane.

Figure 17: Modes on the Rectangular Membranes

The displacement of the membrane (width Lx and length Ly) from a specific mode can be

derived by knowing the mode shape equation. Here, M and N are wave amplitudes and ωmn is the

wave’s angular velocity:

The overall response of the membrane at the resonant frequency of the degenerate modes is the

superposition of these modes [7]:

Building upon the mode shape equation, the resonant frequency for the (m, n) mode is:

28

where T in the function stands for the tension on the membrane, while σ stands for the membrane

mass per unit membrane area. One can see from the equation that the (1, 1) mode always has the

lowest resonant frequency, and its resonant frequency f11 is considered the fundamental

frequency. Modes with large m and n are called high-order modes, which have larger resonant

frequencies.

Modes and their resonance frequencies are important references as researchers at the

University of Rochester (U of R) design driver positions. One can extrapolate, from the graph on

modes and their antinode (hump) positions, that most low-order modes can be excited in the

center of the membrane, and high-order modes, instead, can be better excited at the edge of the

membrane. This pattern for mode distribution is the key to understanding how we arranged

positions for inertia exciters (speaker drivers) at the back of the flat panel smart speaker.

We had four inertia exciters (IV) at the center of the panel. The center of the panel is

assigned for only the bass and the mid-frequency portion of the playback signal. Lower order

modes for the membrane are best excited in this area on the panel, and due to these modes’

resonant frequencies, we can achieve an excellent response in playing back bass and

mid-frequencies. For similar reasons, we attached another inertia exciter right above the bass and

mid-frequency sector (V) that takes charge of playing back the treble(high)-frequency portion of

the signal.

5. Interface (VI)

An audio interface is a hub for PC and audio electronics. In our project, the audio

interface connects the hardware and software components of our flat panel smart speaker. We

chose a Behringer U-Control UCA222 as our interface (VI), which is a USB-powered interface

with two RCA inputs and two RCA outputs, seen in Figure 18. We powered the interface up

using the laptop USB port, connected the piezo amplifier to one of the input RCA, linked the left

29

channel RCA output to the bass-mid frequency driver array, and linked the right channel RCA

output to the treble frequency driver. With our setup, once the interface receives an amplified

speech recording from the piezo amplifier, its built-in Analog to Digital Converter (ADC) can

digitize the speech recording and communicate (via USB) with the virtual assistant software

(panelAssistant installed on the laptop) for voice transcription. The virtual assistant then tells

which song our user wants to play, delivers the music data stream to the crossover network to

separate the data stream into two frequency sections, and feeds the processed data stream into the

Digital to Analog Converter (DAC) in the interface. Eventually, the DAC converts binary data

into acoustic waves and assigns corresponding driver channels for playing back music.

Figure 18: Behringer UCA222 Audio Interface

Aside from the Behringer UCA222, we considered other options for the audio interface,

such as the Behringer UM2, seen in Figure 19.

Figure 19: Behringer UM2 Interface

The UM2 is also a USB audio interface, however, it is excessively bulky. UCA222, on

the other hand, is of a similar size to a smartphone. One of our goals was to shrink the size of the

hardware, and thus we took advantage of UCA222’s tiny size and easily mounted the interface

onto the back frame of the panel.

30

A sound adapter (Figure 20) was another option considered. The sound adapter is simply

a USB adapter with a stereo output jack and a mono microphone input jack. The adapter is way

smaller in size compared to an audio interface, yet it introduces a lot of noise. In contrast to the

noisy sound adapter, a UCA222 supports 16-bit/48kHz audio that ensures high-quality and

low-latency playback out of the computer.

Figure 20: Sound Adapter

Ultimately, the UCA222 was our final choice for the audio interface because it serves as a

good balance between audio quality and size.

6. Power supply

To ensure the portability of our flat panel smart speaker, we used a 9V battery for the

piezo amplifier and used a 16V wall mount for the power amp. We also thought about

consolidating the two power sources. We could have a DC/DC converter after the wall mount

and design buffers between the power amp and the piezo amp so that the two amps could be

assigned with the appropriate power levels with one shared power supply. A block diagram of

this design can be seen in Figure 21.

31

Figure 21: Hardware Block Diagrams with a Shared Power Supply

C. Panel Construction

1. Size and Material

Since the implementation of flat panel technology is not a well-explored field, there are a

lot of questions to be asked pertaining to the best way to build a flat panel speaker. In particular,

the material used for the panel itself is of utmost importance. Research out of the University of

Rochester has yielded quantitative results on the performance of various materials as panels,

including glass, acrylic, and gatorboard. Certain materials tend to perform better in the speaker

capacity (producing cleaner and louder sound using drivers) and some materials perform better

in the microphone capacity (receiving intelligible speech via the piezo sensor). We ended up

using gatorboard in our final build, as it was able to perform sufficiently as both a speaker and

microphone, and a smart speaker needs to be effective in both of these capacities. Another

technique used in the construction of the panel is constrained layer damping, a method of

partially damping the vibrations of acoustic surfaces by conjoining two or more layers of them

together with some sort of binding agent [8]. Through this, we are able to create a panel surface

that performs better as a speaker, and improve the performance of certain materials such as the

gatorboard we used.

32

Another consideration in the construction of our panel was size, which is also nuanced in

its application. It is important to note that our team did not actually construct our final panel,

which was built by the U of R’s Mark Bocko, a prolific figure in the research of flat panel

technology and one of the only people with the means to build fully-fledged flat panel devices.

We ended up using a larger size panel, since it would be louder and also more eye-catching. A

big part of this project was designing something that may have commercial applications, so the

look of the panel was definitely an influencing factor. The frame of the panel is built from a

lightweight wood, which doesn’t factor into the performance as much since the panel is only

vibrating on the portion that isn’t directly affixed to the panel. All in all, the panel design is

pretty well optimized for performance, and implements the results of recent research in the field.

Additional improvements to the performance could be implemented in the panel construction via

crossbars that sit behind the driver placements, which gives them something to vibrate against

and has been shown to improve the sound and volume of the panel as a speaker. However, this

was not incorporated into our final design.

2. Mounting of hardware on panel

At this point, all the components are working properly, so the next step was to mount all

the hardware components onto the frame of our panel. The diagram in Figure 22 shows the

design of our flat-panel.

33

Figure 22: Diagram of flat panel smartspeaker

The only components that have physical contact with the panel are the array of drivers

and the piezo sensor. The rest of the components are expected to be mounted onto the frame. In

order to achieve this, we used a wood board that has sufficient space for a piezo amplifier, a

power amplifier, an audio interface, and a battery. With the help from professor Paul Osborne,

we successfully have the circuit boards mounted on the wood and audio interface attached onto

the board. One aspect that we did not take into consideration is the placement of the

components. From the diagram. We can see that we placed the piezo amplifier on the top left

corner of the wood board, which consequently led to a relatively long wire length from piezo

34

sensor to piezo signal amplifier. On the diagram, the wire is shown in orange. From our

previous research, the wire length between the two components should be as short as it can be

since wire length plays one of the most important roles in introducing noise to the signal

captured by a piezo sensor. We noticed this problem after the piezo amplifier was mounted on

the board. Before taking down the components, we first tried to solder a longer wire and listen

to the signal. Fortunately, the signal after the piezo amplifier recorded by audacity sounds

relatively clean. There is a minimum difference before and after the replacement of wire. The

following is our assumption: Since the components are mounted, it stabilizes the joint between

wire and components. Before mounting the components, despite the fact that all parts work,

they hang freely for most of the time. This instability may to some extent create a negative

impact on the piezo signal. We placed the audio interface below the piezo amplifier and power

amplifier above the audio interface because it matches the layout of how the output and input

ports are located on these components. This concludes the mounting of hardware on the panel

speaker.

III. Standards

Since our project is a smart speaker, the concern of privacy violation should be taken into

careful consideration. Unlike Google Nest or Amazon Alexa whose smart speaker is usually a

device that is placed and displayed on a table. Flat-panel smart speakers could potentially be

designed as painting on the wall, mirror, or TV screen. Due to the fact that even smart speakers

like Amazon Alexa are involved in dozens of charges regarding privacy, it is within our

expectation that data protection and regulation law could be used against this product if the

developers fail to protect users’ personal data.

In 2018, the European Union passed a new law regarding data privacy, called the General

Data Protection Regulation, it is regarded as “the toughest privacy and security law in the

world.” The protection regulation imposes obligations on organizations around the world as long

as the devices collect or target data from users that are related to the European Union [9]. The

regulation defines legal terms including Personal Data, Data Processing, Data subject, and etc.

Each relates closely to our project. For instance, Personal Data is “any information that relates to

an individual who can be directly or indirectly identified.” In our case if our products are on the

market for sale and customers buy them online, it is crucial to protect their credit card

35

information and personal information including names and email addresses. Data Processing

means “any action performed on data, whether automated or manual. The examples cited in the

text include collecting, recording, organizing, structuring, storing, using, erasing.” This term and

regulation protecting this term requires more openness from tech companies about what data

they have and how they share it. In our case, we need to explain to the customers that our panel

assistant is constantly listening to the environment sound and once a keyword is detected, the

panel starts to record automatically and transcribe the recording into words before sending it to

the voice recognition API. The approach that Google takes on following privacy regulations is

they notify users about exactly what information Google needs and what control users have on

their personal data. Google built a Safety Center website that describes how they made

commitments to privacy and security of users. They also came up with privacy and security

principles that explain to the users how they respect users’ privacy. This principle includes

“Never sell our users’ personal information to anyone”, “Make it easy for people to control their

privacy”, “Empower people to review, move, or delete their data”, and etc [10]. We believe that

the idea of protecting user’s privacy is relatively straightforward, and how we would like to

approach this goal is clear due to the excessive experience that Google and Amazon has. But

each step towards the goal should be meticulous and minimum mistakes should be made due to

the importance of protecting users’ privacy.

IV. Conclusions

A. Hardware Conclusions

1. Results

We met our expectations at the beginning of this flat panel smart speaker project by

simplifying the hardware design and shrinking the size of the hardware. For the previous

hardware implementation of a flat panel smart speaker, we had three bulky power supply

adapters plus one power strip as the power source for the panel loudspeaker, which was

extremely space-consuming. With the reconfiguration of the hardware, we can power the panel

loudspeaker up with only three connections: one USB connection for the audio interface, one 9V

battery for the piezo amp, and one wall mount for the power amp. This redesign in the hardware

also saves up a lot of space for the enclosure. In the previous implementation, a gigantic metal

box was required for the enclosure. After the reconfiguration, we can fit all our hardware

36

electronics to the back frame of the panel, which drastically improves the portability of the flat

panel smart speaker.

Figure 23: Better Configured Hardware

Aside from improving the overall hardware design for the project, we spent a great deal

of time achieving high-quality piezo recording at the least possible cost. The previous design

used PCB’s Accelerometer Vibration Sensor. It was of great recording quality but it was

extremely expensive. We changed that into a piezo disc that costs only one dollar, and redesigned

the piezo amp to make it smaller in size and less noisy. We have redesigned the piezo and its amp

so that even a cheap piezo can deliver a clear enough speech for voice transcription.

Figure 24: Cheaper Piezo

37

Figure 25: Smaller and Less Noisy Piezo Amp

However, looking back to the goals we set at the beginning of this project, there are two

goals in the hardware section that we haven’t fulfilled: we didn’t spin the circuit board for the

piezo and we failed to include the Raspberry Pi in our hardware configuration.

2. Shortcomings

Just as mentioned previously, there were some shortcomings of our implementation.. The

first thing being we should have finished our PCB design for the piezo amplifier. Our current

design for the piezo amp is built on a perforation board, which is fragile. The wiring on the

perfboard can easily snap if the flat panel smart speaker falls. Substituting the perfboard with a

PCB can substantially improve our hardware stability and functionality. We also could have

designed a shared power supply for both the piezo amp and the power amp. Since the battery

drains out quickly, taking the 9V battery out of our hardware design would further simplify our

circuit configuration. One USB cord and one wall mount should be enough to power the flat

panel smart speaker up. We also should have deployed software onto a small Raspberry Pi and

substituted our PC with the Pi. If that was achieved, the hardware connection would be

simplified further: even the USB cord would be unnecessary. If the Raspberry Pi had all those

voice transcription and music cancellation programs installed, we would have turned our flat

panel smart speaker into a fully stand-alone speaker. Taking the PC out of our current design

would be a huge leap in improving the portability of the panel. Lastly, we should have designed a

better enclosure for our flat panel smart speaker. Though convenient, it is unsafe to have exposed

38

electronics. A case on the back of the panel will be a better and more stable enclosure compared

to mounting the electronics to the frame.

B. Software

In terms of shortcomings for software, although our Flat-panel smart speaker is able to

perform many of the tasks that an ordinary smart speaker on the market right now is able to

perform, there are a few places that need to be improved. First of all, the panel assistant struggles

to detect voice commands when there is background noise. It is certain that this shortcoming is

partially due to the property of piezo sensors. Piezo sensors exploit piezoelectricity, charge

created across certain materials when a mechanical stress is applied, by measuring the voltage

across a piezoelectric element generated by the applied pressure. It has a relatively low SNR, the

ratio of signal power to the noise power, so it is difficult for the panel assistant to recognize the

key words based on the transcription of received signal. Software might be able to help resolve

this issue by constantly monitoring and adjusting the noise threshold of surrounding noise.

Another solution is to train the assistant with the user's own voice so it is easilier for the assistant

to recognize his or her command. In the case of Amazon Alexa, users are able to train Alexa to

better recognize them by creating voice profiles. All it takes is for the user to say a couple

sentences that Alexa requests. Although these methods will not solve the problem of not being

able to receive commands properly in a noisy environment, they for sure will help with the

problem.

Another shortcoming on the software side is about the real-time cancellation algorithm.

During the daily use of a smart speaker, it is almost certain that a user will come across a

situation of giving commands while the smart speaker is playing music. For a Flat-panel smart

speaker, the piezo sensor and drivers are on the same panel, which means the piezo sensor will

pick up all the vibration that is present on the panel including the music played. Since we know

exactly what music will be played, and the distance between drivers and piezo sensors are

constant, we are given all the requirements to estimate what the music will sound like when

played by the drivers then received by the piezo sensor. Also, computing time will create a

number of sample delays that can be calculated precisely. With all these conditions, we can take

music out of the equation and leave only the user's command instead. In our ideal algorithm, the

convolution of impulse response of our system and the music played should happen in real time,

39

that being said we do not need to do a convolution for each song before calling the real-time

cancellation method. However, we found that doing convolution in real-time requires a long time

to calculate so it creates click sounds. As a solution, we calculated the convolution for each song

that we put in our library. Which is neither realistic nor reasonable. The reason is simply: there

are millions of songs on the internet. It takes dozens of seconds to convolve one song with

impulse response and the time spent convolving will be the time a user needs to wait for a

response. Also, if a user requests one song and immediately asks for another, it will take even

longer for the assistant to process. What’s more, it is not wise to store hundreds of convolution

audio files on the device.

Another shortcoming is the loss of volume control on the panel assistant. In September

2021, Amazon Alexa offered users an option to enable ‘Adaptive Volume’, which increases

speaking volume of the assistant when loud background noise is detected. This functionality

makes the smart speaker much more user-friendly since users no longer need to adjust the

volume manually. In our case, adding functionality for users to be able to increase or decrease

volume by giving commands is a doable and helpful path to improve the product.

Nowaday, almost every smart speaker on the market supports bluetooth or wifi

connection, allowing users to be able to control it from a distance. In the concept of smart home,

a flat panel smart speaker has the potential to become the core processing device that gives

commands to the devices that are already interconnected in a smart home. That being said, Wifi

and bluetooth connection are essential functionalities to add. Right now, we have success in

programming remotely on Raspberry Pi, meaning we are able to write code on it without any

external monitor or keyboard directly connected to Raspberry Pi.

C. Acknowledgements

We would like to thank Dr. Michael Heilemann and Tre DiPassio for their extensive help

and guidance throughout this project. We couldn’t have done it without them. We feel very

fortunate to be able to contribute to the research being conducted in the Vibroacoustics

laboratory, and thank them for the opportunity. We would also like to thank Professor Smith and

Professor Phinney for providing valuable feedback during weekly project meetings.

V. User Manual

40

1. Download Matlab:

Download Matlab. Start the download process in laptop at

https://www.mathworks.com/products/matlab.html.

2. Plug in your panel:

Plug the included USB connector into your laptop. A red light on the interface (The red

device on the back of the panel) should be constantly on.

3. Put in battery:

Place a 9V battery in the battery holder on the back of the panel and connect it with the

piezo amplifier.

4. Run the code:

Copy and paste the Matlab code in the Appendix section of this report into Matlab and

run the file. When “Voice detected, Listening” appears on the command window, the assistant is

ready to go.

Things to try:

Alexa, what time is it Alexa, play poker face

Alexa, what is the weather today Alexa, stop playing music

Alexa, what is the news today Alexa, play kanye west

Alexa, what is the best football team Alexa, play diamonds from sierra leone

VI. References

[1] “HomePod mini - technical specifications,” Apple. [Online]. Available:

https://www.apple.com/homepod-mini/specs/. [Accessed: 08-May-2022].

[2] “What Is A Speaker Crossover Network? (Active & Passive)” [Online]. Available:

https://mynewmicrophone.com/what-is-a-speaker-crossover-network-active-passive/

[Accessed: 08-May-2022]

[3] A. Garaipoom, “Acoustic Guitar Pickup Circuit & Wireless using TL071,”

ElecCircuit, 21-Jul-2020. [Online]. Available:

https://www.eleccircuit.com/acoustic-guitar-pickup-circuit-using-tl071/. [Accessed:

08-May-2022].

41

https://www.mathworks.com/products/matlab.html
https://www.apple.com/homepod-mini/specs/
https://mynewmicrophone.com/what-is-a-speaker-crossover-network-active-passive/
https://www.eleccircuit.com/acoustic-guitar-pickup-circuit-using-tl071/

[4] Sure Electronics AA-AB32165 2x25W at 6 Ohm TDA7492 Class-D Audio Amplifier

Board User Manual, Sure Electronics, Nanjing, Jiangsu Province, China. Accessed: May.

8, 2022. [Online]. Available:

https://www.parts-express.com/pedocs/manuals/320-332--sure-aa-ab32165-2x25W-owne

rs-manual.pdf

[5] Parts Express. [Online]. Available:

https://www.parts-express.com/Sure-AA-AB32261-Stereo-2x150mW-Class-AB-LM4881

-Headphone-Amplifier-Board-320-321. [Accessed: 08-May-2022].

[6] D. A. Russell, “Acoustics and Vibration Animations,” Rectangular Membranes.

[Online]. Available:

https://www.acs.psu.edu/drussell/Demos/rect-membrane/rect-mem.html. [Accessed:

08-May-2022].

[7] T. D. Rossing and N. H. Fletcher, “Two-Dimensional Systems: Membranes and

Plates,” in Principles of vibration and sound, 2nd Edition, New York: Springer, 2004.

[8] B. M. Shafer, “An overview of constrained-layer damping theory and Application -

Scitation.” [Online]. Available: https://asa.scitation.org/doi/abs/10.1121/1.4800606.

[Accessed: 08-May-2022].

[9] “What is GDPR, the EU’s new data protection law?” [Online]. Available:

https://gdpr.eu/what-is-gdpr/ [Accessed: 08-May-2022].

[10] “Our privacy and security principles.” [Online]. Available:

https://safety.google/principles/ [Accessed: 08-May-2022]

42

https://www.parts-express.com/pedocs/manuals/320-332--sure-aa-ab32165-2x25W-owners-manual.pdf
https://www.parts-express.com/pedocs/manuals/320-332--sure-aa-ab32165-2x25W-owners-manual.pdf
https://www.parts-express.com/pedocs/manuals/320-332--sure-aa-ab32165-2x25W-owners-manual.pdf
https://www.parts-express.com/pedocs/manuals/320-332--sure-aa-ab32165-2x25W-owners-manual.pdf
https://www.parts-express.com/Sure-AA-AB32261-Stereo-2x150mW-Class-AB-LM4881-Headphone-Amplifier-Board-320-321
https://www.parts-express.com/Sure-AA-AB32261-Stereo-2x150mW-Class-AB-LM4881-Headphone-Amplifier-Board-320-321
https://www.acs.psu.edu/drussell/Demos/rect-membrane/rect-mem.html
https://asa.scitation.org/doi/abs/10.1121/1.4800606
https://gdpr.eu/what-is-gdpr/
https://safety.google/principles/

VII. Appendix

A.
% Initialization of IBM Watson connection for text-to-speech
self.authenticator_TTS = py.ibm_cloud_sdk_core.authenticators.IAMAuthenticator(self.APIKEY_TTS);
self.TTS = py.ibm_watson.TextToSpeechV1(self.authenticator_TTS);
self.TTS.set_service_url(self.URL_TTS);

% Initialization of IBM Watson connection for speech-to-text
self.authenticator_STT = py.ibm_cloud_sdk_core.authenticators.IAMAuthenticator(self.APIKEY_STT);
self.STT = py.ibm_watson.SpeechToTextV1(self.authenticator_STT);
self.STT.set_service_url(self.URL_STT);

% Helper function for text-to-speech transcription
function [y,fs] = IBM_TTS(self, input_string)

% Open blank audio file to write response to
audio_file = py.open('output.wav' ,'wb');
% Generate response from IBM Watson connection
response = self.TTS.synthesize(input_string, pyargs('accept', 'audio/wav', 'voice', "en-US_LisaV2Voice"));
% Write generated response to output file
audio_file.write(response.result.content);
[y,fs] = audioread('output.wav');

end

% Helper function for speech-to-text transcription
function [output_transcript] = IBM_STT(self,commandAudioArray,fs)

% Write recorded response to .wav file
audiowrite('curr_command.wav',commandAudioArray,fs)
% Open generated .wav file for IBM Watson transcription
audio_file = py.open('curr_command.wav', "rb");
% Generate transcription from IBM Watson connection
result = self.STT.recognize(audio_file, pyargs('content_type', 'audio/wav', 'word_confidence', 'True',

'smart_formatting', 'True'));
output_transcript = string(result.result{'results'}{1}{'alternatives'}{1}{'transcript'});

end

B.
% Helper function for comparison of input command string to dictionary of pre-generated commands
function [mostSimilarCommandNumber, mostSimilarCommand, maxSimVal] =
getMostSimilarCommand(self,input_string)

% Force all uppercase letters in input string to lowercase:
input_string = regexprep(lower(input_string),"'","");
% Create a tokenized document from the input string:
input_tokens = tokenizedDocument(input_string);
% Calculate similarity scores between input tokens and pre-compiled dictionary command tokens:
similarityMatrix = bm25Similarity(self.dictionaryTokens,input_tokens);
[commNums,~,simVals] = find(similarityMatrix);
[maxSimVal,I] = max(simVals);

% Sort previous calculations into list of most similar commands, with respective confidence scores:
[self.currConfidenceRatings, self.currConfidenceOrder] = sortrows(simVals);

43

self.currConfidenceRatings = flipud(self.currConfidenceRatings);
self.currConfidenceOrder = flipud(self.currConfidenceOrder);

self.currCommNums = commNums;
mostSimilarCommandNumber = commNums(I);
mostSimilarCommand = self.dictionary(mostSimilarCommandNumber);

end

C.
% Pre-processing command for parsing of exit phrase, wake word filtering, etc.
function [output_string] = preProcessInputString(self,input_string)

% Force lower case for input string
input_string = lower(input_string);

% Look for the exit phrase (used for exiting the program with a voice command):
split_string = split(input_string);
num_exit_words = 0;
if ismember("exit", split_string)

num_exit_words = num_exit_words + 1;
end
if ismember("stage", split_string)

num_exit_words = num_exit_words + 1;
end
if ismember("left", split_string)

num_exit_words = num_exit_words + 1;
end

% If all 3 words of the exit phrase were recognized, kill the program
if num_exit_words == 3

self.break_state = 1;
input_string = 'NONE';
output_string = 'exit stage left';
return

end

% Now filter out the wake word
split_string = split(input_string);
self.debugString = split(input_string);
if ismember(self.wakeWord,split_string) || self.wakeWordActive || ismember(self.wakeWord2,split_string) ||

ismember(self.wakeWord3,split_string)
self.wakeWordActive = 0;
% Valid wake word was recognized, now do processing
for idx = 1:length(split_string)

elem = split_string(idx);
if strcmp(elem,self.wakeWord) || strcmp(elem,self.wakeWord2) || strcmp(elem,self.wakeWord3)

% Chop off excess so only things past the wake word are included
if (idx == length(split_string)) || (idx == (length(split_string) - 1))

input_string = "NONE";
else

input_string = split_string(idx+1:end);
end

if strcmp(input_string,"NONE")

44

% Condition for when only the wake word was heard, no subsequent command
self.wakeWordActive = 1;
% Read out automated response
[y,fs] = audioread('WHAT_CAN_I_DO.wav');
sound(y,fs)
pause(length(y)/fs + 0.5);
input_string = 'NONE';
output_string = 'NONE';

end
break

end
end

% Condition for no wake word recognized
else

input_string = 'NONE';
output_string = 'NONE';

end

% Checking for numbers in the input string
if ~strcmp(input_string,'NONE')

self.curr_numbers = [];
% Replace any numeric characters with spelled out letters
num_idx = 1;
% Set a timer flag
timer_for_flag = 0;
split_string = split(input_string);
for idx = 1:length(split_string)

elem = split_string(idx);
% Parse for keywords involving timer commands
if ~isempty(str2num(elem)) && ~strcmp(elem,'timer') && ~strcmp(elem,'minutes') &&

~strcmp(elem,'seconds') && ~strcmp(elem,'hours') && ~strcmp(elem,'what')
if ~strcmp(elem,'hot')

% Strange exception we included for a processing glitch with song names
self.curr_numbers(num_idx) = str2num(elem);
num_idx = num_idx + 1;
split_string(idx) = "number";

end
end

% Comparison clause for word “one”, doesn’t transcribe properly
if strcmp(elem,'one')

% for some reason one doesn't transcribed as '1'
self.curr_numbers(num_idx) = 1;
num_idx = num_idx + 1;
split_string(idx) = "number";

end

% Convert all mislabeled “for” to “four” for math commands
if (ismember("plus",split_string) || ismember("minus",split_string) || ismember("times",split_string) ||

ismember("divided",split_string) || ismember("divide",split_string)) && strcmp(elem,'for')
self.curr_numbers(num_idx) = 4;
num_idx = num_idx + 1;
split_string(idx) = "number";

end

45

% Check for erroneous timer 'fors'
if (ismember("timer",split_string)) && strcmp(elem,'for')

if timer_for_flag
self.curr_numbers(num_idx) = 4;
num_idx = num_idx + 1;
split_string(idx) = "number";

end
timer_for_flag = 1;

end
end

% Reconnect processed string for output
output_string = join(split_string);

end
end

D.
function [output_commNum] = postProcessInputString(self,input_string)

% Use getMostSimilarCommand to compare string to input tokens (see Appendix B)
self.getMostSimilarCommand(input_string);

% Parse through the indices of the confidence scores, starting at the most likely option
for idx = 1:length(self.currConfidenceRatings)

% Get command number for the confidence order index
current_command_number = self.currCommNums(self.currConfidenceOrder(idx));

% Check that current command number for important words
validCommand = self.checkForImportantWords(current_command_number,input_string);

if validCommand
output_commNum = current_command_number;
current_command_number
return

end

end

% If no valid command was detected, set command number to -1 as an exception
output_commNum = -1;

end

E.
function [] = doPlayCommand(self, commNum)

% Clear the song name variable
self.song_name = '';

% Scan for command numbers to play individual artists
% Kanye

46

if ismember(commNum, 326:328)
X = randi(5);
self.song_name = self.kanye_songs(X);
self.processed_song_data_index = X;
% Play response
[y,fs] = audioread('KANYE6.wav');
sound(y,fs);
pause(length(y)/fs + 0.5);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Other artist queue commands are omitted here for consolidation %
% Other artists are Kendrick Lamar, the Beatles, MF DOOM, %
% Pink Floyd, Tyler the Creator, Lady Gaga, Steely Dan, %
% Miles Davis, and Anderson Paak. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Paak
elseif ismember(commNum, 345:348)

X = randi(5);
self.song_name = self.paak_songs(X);
self.processed_song_data_index = X + 45;
% Play response
[y,fs] = audioread('PAAK6.wav');
sound(y,fs);
pause(length(y)/fs + 0.5);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Scan for command numbers to play individual songs

% Kanye songs
elseif ismember(commNum, 349)

self.song_name = self.kanye_songs(1);
self.processed_song_data_index = 1;
[y,fs] = audioread('KANYE1.wav');
sound(y,fs);
pause(length(y)/fs + 0.5);

elseif ismember(commNum, 350)
self.song_name = self.kanye_songs(2);
self.processed_song_data_index = 2;
[y,fs] = audioread('KANYE2.wav');
sound(y,fs);
pause(length(y)/fs + 0.5);

elseif ismember(commNum, 351)
self.song_name = self.kanye_songs(3);
self.processed_song_data_index = 3;
[y,fs] = audioread('KANYE3.wav');
sound(y,fs);
pause(length(y)/fs + 0.5);

elseif ismember(commNum, 352)
self.song_name = self.kanye_songs(4);
self.processed_song_data_index = 4;
[y,fs] = audioread('KANYE4.wav');
sound(y,fs);
pause(length(y)/fs + 0.5);

elseif ismember(commNum, 353)

47

self.song_name = self.kanye_songs(5);
self.processed_song_data_index = 5;
[y,fs] = audioread('KANYE5.wav');
sound(y,fs);
pause(length(y)/fs + 0.5);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Other songs queue commands are omitted here for consolidation %
% Other songs are by Kendrick Lamar, the Beatles, MF DOOM, %
% Pink Floyd, Tyler the Creator, Lady Gaga, Steely Dan, %
% Miles Davis, and Anderson Paak. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Paak songs
elseif ismember(commNum, 394)

self.song_name = self.paak_songs(1);
self.processed_song_data_index = 46;
[y,fs] = audioread('PAAK1.wav');
sound(y,fs);
pause(length(y)/fs + 0.5);

elseif ismember(commNum, 395)
self.song_name = self.paak_songs(2);
self.processed_song_data_index = 47;
[y,fs] = audioread('PAAK2.wav');
sound(y,fs);
pause(length(y)/fs + 0.5);

elseif ismember(commNum, 396)
self.song_name = self.paak_songs(3);
self.processed_song_data_index = 48;
[y,fs] = audioread('PAAK3.wav');
sound(y,fs);
pause(length(y)/fs + 0.5);

elseif ismember(commNum, 397)
self.song_name = self.paak_songs(4);
self.processed_song_data_index = 49;
[y,fs] = audioread('PAAK4.wav');
sound(y,fs);
pause(length(y)/fs + 0.5);

elseif ismember(commNum, 398)
self.song_name = self.paak_songs(5);
self.processed_song_data_index = 50;
[y,fs] = audioread('PAAK5.wav');
sound(y,fs);
pause(length(y)/fs + 0.5);

end

% Show the song name
self.song_name = append(erase(self.song_name, ".wav"), "_new_filtered.wav");

% Initialize file, file information, writer object, conditional variables
self.fileReader = dsp.AudioFileReader(self.song_name);
self.fileInfo = audioinfo(self.song_name);
self.deviceWriter = audioDeviceWriter('SampleRate', self.fileInfo.SampleRate);
self.isPlaying = 1;

end

48

F.
% This is an excerpt from the dictionary of commands, showing the need for having multiple variations of a single
command hard-coded into the program.
dictionary_comp1 = [

"whats the weather today" % 1
"what is the weather today" % 2
"weather today" % 3
"the weather today" % 4
"weather" % 5

"what is the news today" % 6
"what is the news" % 7
"news today" % 8
"whats going on today" % 9
"whats happening today" % 10
"what happened today" % 11
"what happened yesterday" % 12

G.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Function to perform cancellation for flat panel devices %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Convolve the played audio with the impulse response of the panel
expected_output = conv(played_audio,IR)';

% Indices for the relevant part of the audio files :
start_idx = 172737;
stop_idx = 197348;

% Get close to the sample delay and then iteratively arrive at the appropriate sample delay to line up the audio files:
[Z,Z_idx] = xcorr(recorded_audio,expected_output(1:length(recorded_audio)));
Z_idx;
[~,I] = max(Z);
Z_idx(I);
% Sample delay is based off of the results of xcorr()
sample_delay = Z_idx(I);

% The value of sample_delay is a good approximation of the sample value, but the following iterative approach will
optimize the value to be as close as possible, since pure subtraction is very sensitive to misalignment.

% This block of code pads the audio signals for later processing
if sample_delay <= 0

pad = zeros(10,1);
recorded_audio_pad = [pad; recorded_audio];
poss_delays = 1:20;

else
min_delay = -sample_delay + 1;
if min_delay > -10

poss_delays = [min_delay:10] + sample_delay;
else

poss_delays = [-10:10] + sample_delay;
end

49

recorded_audio_pad = recorded_audio;
end
min_sum = inf;
min_sum_idx = -1;

% Iteratively parse through the delay values such that you find the value that minimizes the optimization of xcorr()
for idx = 1:length(poss_delays)

curr_delay = poss_delays(idx);

RA = recorded_audio_pad(curr_delay:end);
EO = expected_output(1:length(RA))';

if length(RA) < 400000
RA = RA(1:length(RA));
EO = EO(1:length(EO));

else
RA = RA(1:400000);
EO = EO(1:400000);

end

RA = RA(start_idx:stop_idx);
EO = EO(start_idx:stop_idx);

% Additional processing to calculate the optimum gain value for canceled audio:
opt_gain_exp =@(x) sum(abs((RA - x.*EO)));
opt_gain = fminsearch(opt_gain_exp,0);
EO = EO *opt_gain;

CO_PS = RA - EO;

curr_sum = sum(abs(CO_PS));

if curr_sum < min_sum
min_sum = curr_sum;
min_sum_idx = idx;

end

end

% Optimized sample day
sample_delay = poss_delays(min_sum_idx);

% Trim recorded audio and expected output signals
RA = recorded_audio_pad(sample_delay:end);
EO = expected_output(1:length(RA))';

if length(RA) < 400000
RA = RA(1:length(RA));
EO = EO(1:length(EO));

else
RA = RA(1:400000);
EO = EO(1:400000);

end

EO_pre = EO;

50

% Final optimization of gain value for canceled audio
opt_gain_exp =@(x) sum(abs((RA(start_idx:stop_idx) - x.*EO(start_idx:stop_idx))));
opt_gain = fminsearch(opt_gain_exp,0);

% Calibration step
EO = EO * opt_gain;

% Implementation of pure subtraction
CO_PS = RA - EO;

% CO_PS is the final canceled signal

% Do normalization for listening
RA_norm = RA / max(abs(RA)); % Raw mixture
EO_norm = EO / max(abs(EO)); % Just the music signal
CO_PS_norm = CO_PS / max(abs(CO_PS)); % Enhanced

H.
% Real Time Simulation for Cancellation Technique

% Initializing AudioAssistantHandler instance and all variables
AAH = AssistantAudioHandler(1024, 10, 48000, IR_DRIVER, 1);
opt_gain = 1.0029; % 1.0989
delayed_frame = zeros(1, 1024);
cancelled_frame = zeros(1,1024);
total_output = zeros(1, floor(length(played_audio)));
total_input = zeros(1, floor(length(played_audio)));
total_delayed = zeros(1, floor(length(played_audio)));

% Smaller for loop to speed run time
for i = 1 : 200

% Get input frame, i.e. what the sensor sees
input_frame = recorded_audio((1 + (frame_len*(i-1))) : frame_len*i);
% Get output frame, i.e. what the driver is playing
output_frame = expected_output((1 + (frame_len*(i-1))) : frame_len*i);

% Write samples to buffer
AAH.write_to_buffer(output_frame)

% Using i > 2 since the delay is 1025, which is greater than a frame.
% If i > 2 then the delayed frame is acquired with a delay of 1025 and
% subtracted from the raw piezo input
if i > 2

delayed_frame = AAH.read_from_buffer_with_delay(sample_delay-1);
cancelled_frame = input_frame.' - (delayed_frame*opt_gain);
% Saving the output
total_output((1 + (frame_len*(i-1))): frame_len*i) = cancelled_frame;

% Storing sensor input and delayed frames for graphing purposes
total_input((1 + (frame_len*(i-1))): frame_len*i) = input_frame;

51

total_delayed((1 + (frame_len*(i-1))): frame_len*i) = delayed_frame;
end

end

% the array total_output contains the simulated canceled audio data

Demo Video of the Virtual Assistant Implemented on the Panel:
https://drive.google.com/file/d/1PJSb3pfJldvJ1jDDFQwYhgYOu9JW5XCS/view?usp=sharing

I.
function [output_frame] = read_from_buffer_with_delay(self, delay)

% Since the write function would presumably have been run before this, set read pointer as the previous
position of write pointer

self.read_pointer = self.write_pointer - 1;

% Exception for when write_pointer = 1
if self.read_pointer == 0

self.read_pointer = 10;
end

% The biggest problem with this method is that the delay value may push the indices of the delayed frame
below the indices of the circular buffer, meaning I have to wrap it back around to the end. Thus, I have an if
statement to catch any exceptions for this issue.

% Condition 1: the higher index is lower than the first index of the circular buffer, which de facto means that
both indices are lower than the first index of the circular buffer

if (self.frame_len * self.read_pointer - delay) < 1
output_frame = self.circular_buffer(((self.frame_len * (self.read_pointer - 1)) + 1 - delay) +

length(self.circular_buffer) : (self.frame_len * self.read_pointer - delay) + length(self.circular_buffer));

% Condition 2: only the lower index is lower than the first index of the circular buffer, which means that the
higher index is still within the bounds of the circular buffer index

elseif ((self.frame_len * (self.read_pointer - 1)) + 1 - delay) < 1
output_frame = [self.circular_buffer(((self.frame_len * (self.read_pointer - 1)) + 1 - delay) +

length(self.circular_buffer) : length(self.circular_buffer)) self.circular_buffer(1 : (self.frame_len * self.read_pointer
- delay))];

% Condition 3: Neither index is outside the indices of the circular buffer
else

output_frame = self.circular_buffer((self.frame_len * (self.read_pointer - 1)) + 1 - delay : self.frame_len *
self.read_pointer - delay);

end
end

J. Piezo comparison recordings

52

https://drive.google.com/file/d/1PJSb3pfJldvJ1jDDFQwYhgYOu9JW5XCS/view?usp=sharing

Small:
https://drive.google.com/file/d/1inpQ-WB_wsPhJ3f2bWJunp2OjtFlL0ie/view?usp=shari
ng
Medium:
https://drive.google.com/file/d/1u6nTR7Ay4mTs0X1aZnSsebz5HqOlsw97/view?usp=sha
ring
Large:
https://drive.google.com/file/d/1v8PUJba5qZ3gto4BSVIat4YMlKPxpdjG/view?usp=shar
ing

K. Demo Video of the Virtual Assistant Implemented on the Panel:
https://drive.google.com/file/d/1a3LO67VSScmDhL8WzlVtUBFMsJoKw8C0/view?usp
=sharing

53

https://drive.google.com/file/d/1inpQ-WB_wsPhJ3f2bWJunp2OjtFlL0ie/view?usp=sharing
https://drive.google.com/file/d/1inpQ-WB_wsPhJ3f2bWJunp2OjtFlL0ie/view?usp=sharing
https://drive.google.com/file/d/1u6nTR7Ay4mTs0X1aZnSsebz5HqOlsw97/view?usp=sharing
https://drive.google.com/file/d/1u6nTR7Ay4mTs0X1aZnSsebz5HqOlsw97/view?usp=sharing
https://drive.google.com/file/d/1v8PUJba5qZ3gto4BSVIat4YMlKPxpdjG/view?usp=sharing
https://drive.google.com/file/d/1v8PUJba5qZ3gto4BSVIat4YMlKPxpdjG/view?usp=sharing
https://drive.google.com/file/d/1a3LO67VSScmDhL8WzlVtUBFMsJoKw8C0/view?usp=sharing
https://drive.google.com/file/d/1a3LO67VSScmDhL8WzlVtUBFMsJoKw8C0/view?usp=sharing

